首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

2.
We mimicked the effect of sphingomyelinase activity on lipid mixtures of palmitoyl-oleoyl-phosphatidylcholine, sphingomyelin, ceramide, and 10 mol % cholesterol. Using x-ray diffraction experiments in combination with osmotic stress we found, in agreement with previous studies, that ceramide induces a coexistence of L(α) and L(β) domains. A detailed structural analysis of the coexisting domains demonstrated an increase of lipid packing density and membrane thickness in the L(α) domains upon increasing overall ceramide levels. This provides evidence for a ceramide-driven accumulation of cholesterol in the L(α) domains, in support of previous reports. We further determined the bending rigidities of the coexisting domains and found that the accumulation of cholesterol in the L(α) domains stabilizes their bending rigidity, which experiences a dramatic drop in the absence of cholesterol. Deriving experimental estimates for the spontaneous curvature and Gaussian modulus of curvature, we show, using a simple geometric model for ion channels, that in this way changes in the conformational equilibrium of membrane proteins can be kept small.  相似文献   

3.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C12-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron Lo domains but induces the formation of a gel-like phase. The activation of phospholipase A2 by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.  相似文献   

4.
The effects of ceramide incorporation in supported bilayers prepared from ternary lipid mixtures which have small nanoscale domains have been examined using atomic force and fluorescence microscopy. Both direct ceramide incorporation in vesicles used to prepare the supported bilayers and enzymatic hydrolysis of SM by sphingomyelinase were compared for membranes prepared from 5:5:1 DOPC/sphingomyelin/cholesterol mixtures. Both methods of ceramide incorporation resulted in enlargement of the initial small ordered domains. However, enzymatic ceramide generation led to a much more pronounced restructuring of the bilayer to give large clusters of domains with adjacent areas of a lower phase. The individual domains were heterogeneous with two distinct heights, the highest of which is assigned to a ceramide-rich phase which is hypothesized to occur via ceramide flip-flop to the lower leaflet with formation of a raised domain due to negative membrane curvature. A combination of AFM and fluorescence showed that the bilayer restructuring starts rapidly after enzyme addition, with formation of large clusters of domains at sites of high enzyme activity. The clustering of domains is accompanied by redistribution of fluid phase to the periphery of the domain clusters and there is a continued slow evolution of the bilayer over a period of an hour or more after the enzyme is removed. The relevance of the observed clustering of small nanoscale domains to the postulated coalescence of raft domains to form large signaling platforms is discussed.  相似文献   

5.
The effects of ceramide incorporation in supported bilayers prepared from ternary lipid mixtures which have small nanoscale domains have been examined using atomic force and fluorescence microscopy. Both direct ceramide incorporation in vesicles used to prepare the supported bilayers and enzymatic hydrolysis of SM by sphingomyelinase were compared for membranes prepared from 5:5:1 DOPC/sphingomyelin/cholesterol mixtures. Both methods of ceramide incorporation resulted in enlargement of the initial small ordered domains. However, enzymatic ceramide generation led to a much more pronounced restructuring of the bilayer to give large clusters of domains with adjacent areas of a lower phase. The individual domains were heterogeneous with two distinct heights, the highest of which is assigned to a ceramide-rich phase which is hypothesized to occur via ceramide flip-flop to the lower leaflet with formation of a raised domain due to negative membrane curvature. A combination of AFM and fluorescence showed that the bilayer restructuring starts rapidly after enzyme addition, with formation of large clusters of domains at sites of high enzyme activity. The clustering of domains is accompanied by redistribution of fluid phase to the periphery of the domain clusters and there is a continued slow evolution of the bilayer over a period of an hour or more after the enzyme is removed. The relevance of the observed clustering of small nanoscale domains to the postulated coalescence of raft domains to form large signaling platforms is discussed.  相似文献   

6.
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.  相似文献   

7.
The structure of monolayers of cholesterol/ceramide mixtures was investigated using grazing incidence x-ray diffraction, immunofluorescence, and atomic force microscopy techniques. Grazing incidence x-ray diffraction measurements showed the existence of a crystalline mixed phase of the two components within a range of compositions of cholesterol/ceramide between 100:0 and 67:33. The mixed phase coexists with the ceramide crystalline phase in the range of compositions between 50:50 and 30:70; between 30:70 and 0:100 only the highly crystalline phase of ceramide was detected. The latter was determined and modeled. Immunolabeling was performed with an antibody specific to the cholesterol monohydrate crystalline arrangement. The antibody recognizes crystalline cholesterol monolayers, but does not interact with crystalline ceramide. Immunofluorescence and atomic force microscopy data show that in uncompressed ceramide monolayers, the highly crystalline phase coexists with a disordered loosely packed phase. In contrast, no disordered phase coexists with the new crystalline mixed phase. We conclude that the new mixed phase represents a stable homogeneous arrangement of cholesterol with ceramide. As ceramide incorporates the lipid backbone common to all sphingolipids, this arrangement may be relevant to the understanding of the molecular organization of lipid rafts.  相似文献   

8.
We present atomistic molecular dynamics results for fully hydrated bilayers composed of ceramide NS-24:0, free fatty acid 24:0 and cholesterol, to address the effect of the different components in the stratum corneum (the outermost layer of skin) lipid matrix on its structural properties. Bilayers containing ceramide molecules show higher in-plane density and hence lower rate of passive transport compared to phospholipid bilayers. At physiological temperatures, for all composition ratios explored, the lipids are in a gel phase with ordered lipid tails. However, the large asymmetry in the lengths of the two tails of the ceramide molecule leads to a fluidlike environment at the bilayer midplane. The lateral pressure profiles show large local variations across the bilayer for pure ceramide or any of the two-component mixtures. Close to the skin composition ratio, the lateral pressure fluctuations are greatly suppressed, the ceramide tails from the two leaflets interdigitate significantly, the depression in local density at the interleaflet region is lowered, and the bilayers have lowered elastic moduli. This indicates that the observed composition ratio in the stratum corneum lipid layer is responsible for both the good barrier properties and the stability of the lipid structure against mechanical stresses.  相似文献   

9.
Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol. For a certain range of cholesterol concentration, formation of domains with raft-like properties was observed. Strikingly, the lipophilic probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18) was excluded from sphingomyelin-enriched regions, where the raft marker ganglioside GM1 was localized. Cholesterol was shown to promote lipid segregation in dioleoyl-phosphatidylcholine-enriched, liquid-disordered, and sphingomyelin-enriched, liquid-ordered phases. Most importantly, the lipid mobility in sphingomyelin-enriched regions significantly increased by increasing the cholesterol concentration. These results pinpoint the key role, played by cholesterol in tuning lipid dynamics in membranes. At cholesterol concentrations >50 mol%, domains vanished and the lipid diffusion slowed down upon further addition of cholesterol. By taking the molecular diffusion coefficients as a fingerprint of membrane phase compositions, FCS is proven to evaluate domain lipid compositions. Moreover, FCS data from ternary and binary mixtures have been used to build a ternary phase diagram, which shows areas of phase coexistence, transition points, and, importantly, how lipid dynamics varies between and within phase regions.  相似文献   

10.
A series of cholesterol (Chol) probes with NBD and Dansyl fluorophores attached to the 3-hydroxyl position via carbamate linkers has been designed and synthesized and their ability to mimic the behavior of natural cholesterol in bilayer membranes has been examined. Fluorescence spectroscopy data indicate that the NBD-labeled lipids are located in the polar headgroup region of the bilayer with their position varying with the method of fluorophore attachment and the linker length. The partitioning of the Chol probes between liquid-ordered (Lo) and liquid-disordered (Lo) phases in supported bilayers prepared from ternary lipid mixtures of DOPC, Chol and either egg sphingomyelin or DPPC was examined by fluorescence microscopy. The carbamate-linked NBD-Chols show a stronger preference for partitioning into Lo domains than does a structurally similar probe with an ester linkage, indicating the importance of careful optimization of probe and linker to provide the best Chol mimic. Comparison of the partitioning of NBD probes to literature data for native Chol indicates that the probes reproduce well the modest enrichment of Chol in Lo domains as well as the ceramide-induced displacement of Chol. One NBD probe was used to follow the dynamic redistribution of Chol in phase separated membranes in response to in situ ceramide generation. This provides the first direct optical visualization of Chol redistribution during enzymatic ceramide generation and allows the assignment of new bilayer regions that exclude dye and have high lateral adhesion to ceramide-rich regions.  相似文献   

11.
Scanning-fluctuation correlation spectroscopy was used to detect subresolution organizational fluctuations in the lipid liquid-crystalline phase for single lipid model systems. We used the fluorescent probe Laurdan which is sensitive to the amount of water in the membrane to show that there is a spatial heterogeneity on the scale of few pixels (the size of the pixel is 50 nm). We calculated the pixel variance of the GP function and we found that the variance has a peak at the phase transition for 3 different samples made of pure lipids. The pixel variance has an abrupt change at the phase transition of the membrane and then it slowly decreases at higher temperature. The relatively large variance of the GP indicates that the liquid phase of the membrane is quite heterogeneous even several degrees higher than the phase transition temperature. We interpreted this result as evidence of an underlying microscale structure of the membrane in which water is not uniformly distributed at the micron scale. Imaging of these microstructures shows that the pixels with different GP tend to concentrate in specific domains in the membrane. In the case of single lipid membrane, the statistical and fluctuation analysis of the GP data shows that even such simple lipid systems are capable of generating and maintaining stable structural and organizational heterogeneities.  相似文献   

12.
13.
Sot J  Ibarguren M  Busto JV  Montes LR  Goñi FM  Alonso A 《FEBS letters》2008,582(21-22):3230-3236
Fluorescence confocal microscopy and differential scanning calorimetry are used in combination to study the phase behaviour of bilayers composed of PC:PE:SM:Chol equimolecular mixtures, in the presence or absence of 10mol% egg ceramide. In the absence of ceramide, separate liquid-ordered and liquid-disordered domains are observed in giant unilamellar vesicles. In the presence of ceramide, gel-like domains appear within the liquid-ordered regions. The melting properties of these gel-like domains resemble those of SM:ceramide binary mixtures, suggesting Chol displacement by ceramide from SM:Chol-rich liquid-ordered regions. Thus three kinds of domains coexist within a single vesicle in the presence of ceramide: gel, liquid-ordered, and liquid-disordered. In contrast, when 10mol% egg diacylglycerol is added instead of ceramide, homogeneous vesicles, consisting only of liquid-disordered bilayers, are observed.  相似文献   

14.
We have recently proposed a phase diagram for mixtures of porcine brain sphingomyelin (BSM), cholesterol (Chol), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) on the basis of kinetics of carboxyfluorescein efflux induced by the amphipathic peptide delta-lysin. Although that study indicated the existence of domains, phase separations in the micrometer scale have not been observed by fluorescence microscopy in BSM/Chol/POPC mixtures, though they have for some other sphingomyelins (SM). Here we examine the same BSM/Chol/POPC system by a combination of fluorescence resonance energy transfer (FRET) and Monte Carlo simulations. The results clearly demonstrate that domains are formed in this system. Comparison of the FRET experimental data with the computer simulations allows the estimate of lipid-lipid interaction Gibbs energies between SM/Chol, SM/POPC, and Chol/POPC. The latter two interactions are weakly repulsive, but the interaction between SM and Chol is favorable. Furthermore, those three unlike lipid interaction parameters between the three possible lipid pairs are sufficient for the existence of a closed loop in the ternary phase diagram, without the need to involve multibody interactions. The calculations also indicate that the largest POPC domains contain several thousand lipids, corresponding to linear sizes of the order of a few hundred nanometers.  相似文献   

15.
Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SM-->Cer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (pi = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of the molecular dipole moments perpendicular to the air/water interface. In consequence, protein-driven generation of specific out-of-equilibrium states, an accepted concept for maintenance of transmembrane lipid asymmetry, must also be considered on the lateral level. Lateral enzyme-specific out-of-equilibrium organization of lipid domains represents a new level of signal transduction from local (nm) to long-range (microm) scales. The cross-talk between lateral domain structures and dipolar electrostatic fields adds new perspectives to the mechanisms of SMase-mediated signal transduction in biological membranes.  相似文献   

16.
In this report, we applied site-specifically deuterated N-stearoylsphingomyelins (SSMs) to raft-exhibiting ternary mixtures containing SSM, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol (Chol) and successfully acquired deuterium quadrupole coupling profiles of SSM from liquid-ordered (Lo) and liquid-disordered (Ld) domains. To our knowledge, this is the first report that shows detailed lipid chain dynamics separately and simultaneously obtained from coexisting Lo and Ld domains. We also found that the quadrupole profile of the Lo phase in the ternary system was almost identical to that in the SSM-Chol binary mixture, suggesting that the order profile of the binary system is essentially applicable to more complicated membrane systems in terms of the acyl chain order. We also demonstrated that 2H NMR spectroscopy, in combination with organic synthesis of deuterated components, could be used to reveal the accurate mole fractions of each component distributed in the Lo and Ld domains. As compared with the reported tie-line analysis of phase diagrams, the merit of our 2H NMR analysis is that the domain-specific compositional fractions are directly attainable without experimental complexity and ambiguity. The accurate compositional distributions as well as lipid order profiles in ternary mixtures are relevant to understanding the molecular mechanism of lipid raft formation.  相似文献   

17.
The coexistence of lipid domains with different degrees of lipid packing in the plasma membrane of mammalian cells has been postulated, but direct evidence has so far been challenging to obtain because of the small size and short lifetime of these domains in live cells. Here, we use fluorescence spectral correlation spectroscopy in conjunction with a probe sensitive to the membrane environment to quantify spectral fluctuations associated with dynamics of membrane domains in live cells. With this method, we show that membrane domains are present in live COS-7 cells and have a lifetime lower bound of 5.90 and 14.69 ms for the ordered and disordered phases, respectively. Comparisons to simulations indicate that the underlying mechanism of these fluctuations is complex but qualitatively described by a combination of dye diffusion between membrane domains as well as the motion of domains within the membrane.  相似文献   

18.
Ali MR  Cheng KH  Huang J 《Biochemistry》2006,45(41):12629-12638
The effect of brain ceramide on the maximum solubility of cholesterol in ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol, and ceramide was investigated at 37 degrees C by a cholesterol oxidase (COD) reaction rate assay and by optical microscopy. The COD reaction rate assay showed a sharp increase in cholesterol chemical potential as the cholesterol mole fraction approaches the solubility limit. A decline in the COD reaction rate was found after the formation of cholesterol crystals. The maximum solubility of brain ceramide in POPC bilayers was determined to be 68 +/- 2 mol % by microscopy. We found that ceramide has a much higher affinity for the ordered bilayers than cholesterol, and the maximum solubility of cholesterol decreases with the increase in ceramide content. More significantly, the displacement of cholesterol by ceramide follows a 1:1 relation. At the cholesterol solubility limit, adding one more ceramide molecule to the lipid bilayer drives one cholesterol out of the bilayer into the cholesterol crystal phase, and cholesterol is incapable of displacing ceramide from the bilayer phase. On the basis of these findings, a ternary phase diagram of the POPC/cholesterol/ceramide mixture was constructed. The behaviors of ceramide and cholesterol can be explained by the umbrella model. Both ceramide and cholesterol have small polar headgroups and relatively large nonpolar bodies. In a PC bilayer, ceramide and cholesterol compete for the coverage of the headgroups of neighboring PC to prevent the exposure of their nonpolar bodies to water. This competition results in the 1:1 displacement as well as the displacement of cholesterol by ceramide from lipid raft domains.  相似文献   

19.
The sphingolipid ceramides are known to influence lipid lateral organization in biological membranes. In particular, ceramide-induced alterations of microdomains can be involved in several cell functions, ranging from apoptosis to immune response. We used a combined approach of atomic force microscopy, fluorescence correlation spectroscopy, and confocal fluorescence imaging to investigate the effects of ceramides in model membranes of biological relevance. Our results show that physiological quantities of ceramide in sphingomyelin/dioleoylphosphatidylcholine/cholesterol supported bilayers lead to a significant rearrangement of lipid lateral organization. Our experimental setup allowed a simultaneous characterization of both structural and dynamic modification of membrane microdomains, induced by the presence of ceramide. Formation of similar ceramide-enriched domains and, more general, alterations of lipid-lipid interactions can be of crucial importance for the biological function of cell membranes.  相似文献   

20.
Lipid rafts and ceramide (Cer)-platforms are membrane domains that play an important role in several biological processes. Cer-platforms are commonly formed in the plasma membrane by the action of sphingomyelinase (SMase) upon hydrolysis of sphingomyelin (SM) within lipid rafts. The interplay among SMase activity, initial membrane properties (i.e., phase behavior and lipid lateral organization) and lipid composition, and the amount of product (Cer) generated, and how it modulates membrane properties were studied using fluorescence methodologies in model membranes. The activity of SMase was evaluated by following the hydrolysis of radioactive SM. It was observed that 1), the enzyme activity and extent of hydrolysis are strongly dependent on membrane physical properties but not on substrate content, and are higher in raft-like mixtures, i.e., mixtures with liquid-disordered/liquid-ordered phase separation; and 2), Cer-induced alterations are also dependent on membrane composition, specifically the cholesterol (Chol) content. In the lowest-Chol range, Cer segregates together with SM into small (∼8.5 nm) Cer/SM-gel domains. With increasing Chol, the ability of Cer to recruit SM and form gel domains strongly decreases. In the high-Chol range, a Chol-enriched/SM-depleted liquid-ordered phase predominates. Together, these data suggest that in biological membranes, Chol in particular and raft domains in general play an important role in modulating SMase activity and regulating membrane physical properties by restraining Cer-induced alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号