首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Refolding curves of the integral membrane protein outer membrane protein A (OmpA) were measured to determine the conformational stabilities of this model system for membrane protein folding. Wild-type OmpA exhibits a free energy of unfolding (DeltaG degrees H2O) of 10.5 kcal/mol. Mutants, containing a single tryptophan residue at the native positions 7, 15, 57, 102, or 143, are less stable than wild-type OmpA, with DeltaG degrees H2O values of 6.7, 4.8, 2.4, 4.7, and 2.8 kcal/mol, respectively. The trend observed here is discussed in terms of noncovalent interactions, including aromatic interactions and hydrogen bonding. The effect of the soluble tail on the conformational stability of the transmembrane domain of OmpA was also investigated via truncated single-Trp mutants; DeltaG degrees H2O values for four of the five truncated mutants are greater by >2.7 kcal/mol relative to the full-length versions, suggesting that the absence of the soluble domain may destabilize the unfolded transmembrane domain. Finally, dynamic light scattering experiments were performed to measure the effects of urea and protein on vesicle size and stability. Urea concentrations greater than 1 M cause an increase in vesicle size, and these diameters are unaltered in the presence of protein. These dynamic light scattering results complement the fluorescence studies and illustrate the important effects of vesicle size on protein conformational stability.  相似文献   

2.
Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55–64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1–2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5–9 kJ/mol for the fast process and ~29–37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.  相似文献   

3.
We present a detailed study on the formation of neighboring β-strands during the folding of a monomeric integral membrane protein of the β-barrel type. β-Strand and β-barrel formations were investigated for the eight-stranded transmembrane domain of outer membrane protein A (OmpA) with single-tryptophan (W), single-cysteine (C) OmpA mutants. Based on the OmpA structure, W and C were introduced in two neighboring β-strands oriented toward the hydrocarbon core of the membrane. Replaced residue pairs were closer to either the periplasmic turns (named cis-side) or the outer loops (named trans-side) of the strand. WnCm OmpA mutants containing W at position n and C at position m along the polypeptide chain were labeled at the C by a nitroxyl spin label, which is a short-range fluorescence quencher. To monitor the association of neighboring β-strands, we determined the proximity between fluorescent W and labeled C in OmpA folding experiments by intramolecular fluorescence quenching. Formation of native β-strand contacts in folding experiments required the lipid membrane. Residues in the trans-side of strands β1, β2, and β3, represented by mutants W15C351β2, trans) and W57C353β2, trans), reached close proximity prior to residues in the N(β1)- and C(β8)-terminal strands as examined for mutants W15C1621β8, trans) and W7C1701β8, cis). Tryptophan and cysteine converged slightly faster in W15C1621β8, trans) than in W7C1701β8, cis). The last folding step was observed for residues at the cis-ends of strands β1 and β2 for the mutant W7C431β2, cis). The data also demonstrate that the neighboring β-strands associate upon insertion into the hydrophobic core of the lipid bilayer.  相似文献   

4.
Unfolded outer membrane protein A (OmpA) of Escherichia coli spontaneously inserts and refolds into lipid bilayers upon dilution of denaturing urea. In the accompanying paper, we have developed a new technique, time-resolved distance determination by fluorescence quenching (TDFQ), which is capable of monitoring the translocation across lipid bilayers of fluorescence reporter groups such as tryptophan in real time [Kleinschmidt, J. H., and Tamm, L. K. (1999) Biochemistry 38, 4996-5005]. Specifically, we have shown that wild-type OmpA, which contains five tryptophans, inserts into lipid bilayers via three structurally distinct membrane-bound folding intermediates. To take full advantage of the TDFQ technique and to further dissect the folding pathway, we have made five different mutants of OmpA, each containing a single tryptophan and four phenylalanines in the five tryptophan positions of the wild-type protein. All mutants refolded in vivo and in vitro and, as judged by SDS-PAGE, trypsin fragmentation, and Trp fluorescence, their refolded state was indistinguishable from the native state of OmpA. TDFQ analysis of the translocation across the lipid bilayer of the individual Trps of OmpA yielded the following results: Below 30 degrees C, all Trps started from a far distance from the bilayer center and then gradually approached a distance of approximately 10 A from the bilayer center. In a narrow temperature range between 30 and 35 degrees C, Trp-15, Trp-57, Trp-102, and Trp-143 were detected very close to the center of the lipid bilayer in the first few minutes and then moved to greater distances from the center. When monitored at 40 degrees C, which resolved the last steps of OmpA refolding, these four tryptophans crossed the center of the bilayer and approached distances of approximately 10 A from the center after refolding was complete. In contrast Trp-7 approached the 10 A distance from a far distance at all temperatures and was never detected to cross the center of the lipid bilayer. The translocation rates of Trp-15, Trp-57, Trp-102, and Trp-143 which are each located in different outer loop regions of the four beta-hairpins of the eight-stranded beta-barrel of OmpA were very similar to one another. This result and the common distances of these Trps from the membrane center observed in the third membrane-bound folding intermediate provide strong evidence for a synchronous translocation of all four beta-hairpins of OmpA across the lipid bilayer and suggest that OmpA inserts and folds into lipid bilayers by a concerted mechanism.  相似文献   

5.
《Biophysical journal》2020,118(2):403-414
Nanodiscs (NDs) are an excellent alternative to small unilamellar vesicles (SUVs) for studies of membrane protein structure, but it has not yet been shown that membrane proteins are able to spontaneously fold and insert into a solution of freely diffusing NDs. In this article, we present SDS-PAGE differential mobility studies combined with fluorescence, circular dichroism, and ultraviolet resonance Raman spectroscopy to confirm the spontaneous folding of outer membrane protein A (OmpA) into preformed NDs. Folded OmpA in NDs was incubated with Arg-C protease, resulting in the digestion of OmpA to membrane-protected fragments with an apparent molecular mass of ∼26 kDa (major component) and ∼24 kDa (minor component). The OmpA folding yields were greater than 88% in both NDs and SUVs. An OmpA adsorbed intermediate on NDs could be isolated at low temperature and induced to fold via an increase in temperature, analogous to the temperature-jump experiments on SUVs. The circular dichroism spectra of OmpA in NDs and SUVs were similar and indicated β-barrel secondary structure. Further evidence of OmpA folding into NDs was provided by ultraviolet resonance Raman spectroscopy, which revealed the intense 785 cm−1 structural marker for folded OmpA in NDs. The primary difference between folding in NDs and SUVs was the kinetics; the rate of folding was two- to threefold slower in NDs compared to in SUVs, and this decreased rate can tentatively be attributed to the properties of NDs. These data indicate that NDs may be an excellent alternative to SUVs for folding experiments and offer benefits of optical clarity, sample homogeneity, control of ND:protein ratios, and greater stability.  相似文献   

6.
The folding reaction of a β-barrel membrane protein, outer membrane protein A (OmpA), is probed with F?rster resonance energy transfer (FRET) experiments. Four mutants of OmpA were generated in which the donor fluorophore, tryptophan, and acceptor molecule, a naphthalene derivative, are placed in various locations on the protein to report the evolution of distances across the bilayer and across the protein pore during a folding event. Analysis of the FRET efficiencies reveals three timescales for tertiary structure changes associated with insertion and folding into a synthetic bilayer. A narrow pore forms during the initial stage of insertion, followed by bilayer traversal. Finally, a long-time component is attributed to equilibration and relaxation, and may involve global changes such as pore expansion and strand extension. These results augment the existing models that describe concerted insertion and folding events, and highlight the ability of FRET to provide insight into the complex mechanisms of membrane protein folding. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

7.
OmpA is one of only a few transmembrane proteins whose folding and stability have been investigated in detail. However, only half of the OmpA mass encodes its transmembrane β-barrel; the remaining sequence is a soluble domain that is localized to the periplasmic side of the outer membrane. To understand how the OmpA periplasmic domain contributes to the stability and folding of the full-length OmpA protein, we cloned, expressed, purified and studied the OmpA periplasmic domain independently of the OmpA transmembrane β-barrel region. Our experiments showed that the OmpA periplasmic domain exists as an independent folding unit with a free energy of folding equal to − 6.2 (± 0.1) kcal mol-1 at 25 °C. Using circular dichroism, we determined that the OmpA periplasmic domain adopts a mixed alpha/beta secondary structure, a conformation that has previously been used to describe the partially folded non-native state of the full-length OmpA. We further discovered that the OmpA periplasmic domain reduces the self-association propensity of the unfolded barrel domain, but only when covalently attached (in cis). In vitro folding experiments showed that self-association competes with β-barrel folding when allowed to occur before the addition of membranes, and the periplasmic domain enhances the folding efficiency of the full-length protein by reducing its self-association. These results identify a novel chaperone function for the periplasmic domain of OmpA that may be relevant for folding in vivo. We have also extensively investigated the properties of the self-association reaction of unfolded OmpA and found that the transmembrane region must form a critical nucleus comprised of three molecules before undergoing further oligomerization to form large molecular weight species. Finally, we studied the conformation of the unfolded OmpA monomer and found that the folding-competent form of the transmembrane region adopts an expanded conformation, which is in contrast to previous studies that have suggested a collapsed unfolded state.  相似文献   

8.
Results of studies, mostly using the outer membrane, 325 residue protein OmpA, are reviewed which concern its translocation across the plasma membrane and incorporation into the outer membrane ofEscherichia coli. For translocation, neither a unique export signal, acting in a positive fashion within the mature part of the precursor, nor a unique conformation of the precursor is required. Rather, the mature part of a secretory protein has to be export-compatible. Export-incompatibility can be caused by a stretch of 16 (but not 8 or 12) hydrophobic residues, too low a size of the polypeptide (smaller than 75 residue precursors), net positive charge at the N-terminus, or lack of a turn potential at the same site. It is not yet clear whether binding sites for chaperonins (SecB, trigger factor, GroEL) within OmpA are importantin vivo. The mechanism of sorting of outer membrane proteins is not yet understood. The membrane part of OmpA, encompassing residues 1 to about 170, it thought to traverse the membrane eight times in antiparallel -sheet conformation. At least the structure of the last -strand (residues 160–170) is of crucial importance for membrane assembly. It must be amphiphilic or hydrophobic, these properties must extend over at least nine residues, and it must not contain a proline residue at or near its center. Membrane incorporation of OmpA involves a conformational change of the protein and it could be that the last -strand initiates folding and assembly in the outer membrane.  相似文献   

9.
Negoda A  Negoda E  Reusch RN 《The FEBS journal》2010,277(21):4427-4437
The native conformation of the 325-residue outer membrane protein A (OmpA) of Escherichia coli has been a matter of contention. A narrow-pore, two-domain structure has vied with a large-pore, single-domain structure. Our recent studies show that Ser163 and Ser167 of the N-terminal domain (1-170) are modified in the cytoplasm by covalent attachment of oligo-(R)-3-hydroxybutyrates (cOHBs), and further show that these modifications are essential for the N-terminal domain to be incorporated into planar lipid bilayers as narrow pores (≈ 80 pS, 1 m KCl, 22 °C). Here, we examined the potential effect(s) of periplasmic modifications on pore structure by comparing OmpA isolated from outer membranes (M-OmpA) with OmpA isolated from cytoplasmic inclusion bodies (I-OmpA). Chemical and Western blot analysis and 1H-NMR showed that segment 264-325 in M-OmpA, but not in I-OmpA, is modified by cOHBs. Moreover, a disulfide bond is formed between Cys290 and Cys302 by the periplasmic enzyme DsbA. Planar lipid bilayer studies indicated that narrow pores formed by M-OmpA undergo a temperature-induced transition into stable large pores (≈ 450 pS, 1 M KCl, 22 °C) [energy of activation (Ea) = 33.2 kcal·mol(-1)], but this transition does not occur with I-OmpA or with M-OmpA that has been exposed to disulfide bond-reducing agents. The results suggest that the narrow pore is a folding intermediate, and demonstrate the decisive roles of cOHB-modification, disulfide bond formation and temperature in folding OmpA into its native large-pore configuration.  相似文献   

10.
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid–protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

11.
The replacement of tryptophan 59 of ribonuclease T1 by a tyrosine residue does not change the stability of the protein. However, it leads to a strong acceleration of a major, proline-limited reaction that is unusually slow in the refolding of the wild-type protein. The distribution of fast- and slow-folding species and the kinetic mechanism of slow folding are not changed by the mutation. Trp-59 is in close contact to Pro-39 in native RNase T1 and probably also in an intermediate that forms rapidly during folding. We suggest that this specific interaction interferes with the trans----cis reisomerization of the Tyr-38-Pro-39 bond at the stage of a native-like folding intermediate. The steric hindrance is abolished either by changing Trp-59 to a less bulky residue, such as tyrosine, or, by a destabilization of folding intermediates at increased concentrations of denaturant. Under such conditions folding of the wild-type protein and of the W59Y variant no longer differ. These results provide strong support for the proposal that trans----cis isomerization of Pro-39 is responsible for the major, very slow refolding reaction of RNase T1. They also indicate that specific tertiary interactions in folding intermediates do exist, but do not necessarily facilitate folding. They can have adverse effects and decelerate rate-limiting steps by trapping partially folded structures.  相似文献   

12.
The majority of eukaryotic secretory and membrane proteins contain disulfide bonds, which are strongly conserved within protein families because of their crucial role in folding or function. The exact role of these disulfide bonds during folding is unclear. Using virus-driven evolution we generated a viral glycoprotein variant, which is functional despite the lack of an absolutely conserved disulfide bond that links two antiparallel β-strands in a six-stranded β-barrel. Molecular dynamics simulations revealed that improved hydrogen bonding and side chain packing led to stabilization of the β-barrel fold, implying that β-sheet preference codirects glycoprotein folding in vivo. Our results show that the interactions between two β-strands that are important for the formation and/or integrity of the β-barrel can be supported by either a disulfide bond or β-sheet favoring residues.  相似文献   

13.
14.
We present the initial findings of a theoretical study of hydrogen bond formation between two formamide molecules in water and in carbon tetrachloride. These systems were chosen as the simplest models for secondary structure formation in the polar environment near the protein surface and the apolar environment of the protein interior. We have employed thermodynamic simulation methods to obtain absolute binding free energies and free energy profiles for the formation of peptide hydrogen bonds in the two solvents. We find that the amide hydrogen bond is stable by 8.4 kcal/mol in CCl4, and by 0.3 kcal/mol in water. Our results indicate also that the hydrogen-bonded dimer is 2.2 kcal/mol more stable in water than it is in CCl4. We compare our results with those from experiment, and discuss their use in interpreting mechanisms of protein folding.  相似文献   

15.
R Koebnik 《The EMBO journal》1996,15(14):3529-3537
The two-domain, 325 residue outer membrane protein OmpA of Escherichia coli is a well-established model for the study of membrane assembly. The N-terminal domain, consisting of approximately 170 amino acid residues, is embedded in the membrane, presumably in the form of a beta-barrel consisting of eight antiparallel transmembrane beta-strands. A set of 16 gene variants carrying deletions in the membrane-embedded domain of OmpA was constructed. When pairs of these mutant genes were co-expressed in E.coli, it was found that a functional OmpA protein could be assembled efficiently from two complementary protein fragments. Assembly was found when the polypeptide chain was split at the second or third periplasmic turn. All four protein termini were located in the periplasmic space. Interestingly, duplication of transmembrane strands five and six led to a variant with an unusual topology: the N-terminus of one fragment and the C-terminus of the other fragment were exposed at the cell surface. This is the first demonstration of correct membrane assembly of split beta-structured membrane proteins. These findings are important for a better understanding of their folding/assembly pathway and may have implications for the development of artificial outer membrane proteins and for the cell surface display of heterologous peptides or proteins.  相似文献   

16.
S K Silverman  T R Cech 《Biochemistry》1999,38(27):8691-8702
Tertiary interactions that allow RNA to fold into intricate three-dimensional structures are being identified, but little is known about the thermodynamics of individual interactions. Here we quantify the tertiary structure contributions of individual hydrogen bonds in a "ribose zipper" motif of the recently crystallized Tetrahymena group I intron P4-P6 domain. The 2'-hydroxyls of P4-P6 nucleotides C109/A184 and A183/G110 participate in forming the "teeth" of the zipper. These four nucleotides were substituted in all combinations with their 2'-deoxy and (separately) 2'-methoxy analogues, and thermodynamic effects on the tertiary folding DeltaG degrees ' were assayed by the Mg2+ dependence of electrophoretic mobility in nondenaturing gels. The 2'-deoxy series showed a consistent trend with an average contribution to the tertiary folding DeltaG degrees' of -0.4 to -0.5 kcal/mol per hydrogen bond. Contributions were approximately additive, reflecting no cooperativity among the hydrogen bonds. Each "tooth" of the ribose zipper (comprising two hydrogen bonds) thus contributes about -1.0 kcal/mol to the tertiary folding DeltaG degrees'. Single 2'-methoxy substitutions destabilized folding by approximately 1 kcal/mol, but the trend reversed with multiple 2'-methoxy substitutions; the folding DeltaG degrees' for the quadruple 2'-methoxy derivative was approximately unchanged relative to wild-type. On the basis of these data and on temperature-gradient gel results, we conclude that entropically favorable hydrophobic interactions balance enthalpically unfavorable hydrogen bond deletions and steric clashes for multiple 2'-methoxy substitutions. Because many of the 2'-deoxy derivatives no longer have the characteristic hydrogen-bond patterns of the ribose zipper motif but simply have individual long-range ribose-base or ribose-ribose hydrogen bonds, we speculate that the energetic value of -0.4 to -0.5 kcal/mol per tertiary hydrogen bond may be more generally applicable to RNA folding.  相似文献   

17.
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel -strands, forming an amphiphilic connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of -strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed -barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly.  相似文献   

18.
The quenching of the fluorescence of liver alcohol dehydrogenase (LADH) by molecular oxygen has been studied by both fluorescence lifetime and intensity measurements. This was done in the presence of 1 M acrylamide which selectively quenches the fluorescence of the surface tryptophan residue, Trp-15, thus allowing us to focus on the quenching of the deeply buried tryptophan, Trp-314, by molecular oxygen. Such studies yielded a Stern-Volmer plot of F0/F with a greater slope than the corresponding tau o/tau plot. This indicates that both dynamic and static quenching of Trp-314 occurs. The temperature dependence of the dynamic quenching of LADH by oxygen was also studied at three temperatures, from which we determined the activation enthalpy for the quenching of Trp-314 to be about 10 kcal/mol. The oxygen quenching of a ternary complex of LADH, NAD+ and trifluoroethanol was also studied. The rate constant for dynamic quenching of Trp-314 by oxygen was found to be approximately the same in the ternary complex as that in the unliganded enzyme.  相似文献   

19.
The chloroplast outer membrane contains different, specialized pores that are involved in highly specific traffic processes from the cytosol into the chloroplast and vice versa. One representative member of these channels is the outer envelope protein 16 (OEP16), a cation-selective high conductance channel with high selectivity for amino acids. Here we study the mechanism and kinetics of the folding of this membrane protein by fluorescence and circular dichroism spectroscopy, using deletion mutants of the two single tryptophanes Trp-77-->Phe-77 and Trp-100-->Phe-100. In addition, the wild-type spectra were deconvoluted, depicting the individual contributions from each of the two tryptophan residues. The results show that both tryptophan residues are located in a completely different environment. The Trp-77 is deeply buried in the hydrophobic part of the protein, whereas the Trp-100 is partially solvent exposed. These results were further confirmed by studies of fluorescence quenching with I(-). The kinetics of the protein folding are studied by stopped flow fluorescence and circular dichroism measurements. The folding process depends highly on the detergent concentration and can be divided into an ultrafast phase (k > 1000 s(-1)), a fast phase (200-800 s(-1)), and a slow phase (25-70 s(-1)). The slow phase is absent in the W100F mutant. Secondary structure analysis and comparision with closely related proteins led to a new model of the structure of OEP16, suggesting that the protein is, in contrast to most other outer membrane proteins studied so far, purely alpha-helical, consisting of four transmembrane helices. Trp-77 is located in helix II, whereas the Trp-100 is located in the loop between helices II and III, close to the interface to helix III. We suggest that the first, very fast process corresponds to the formation of the helices, whereas the insertion of the helices into the detergent micelle and the correct folding of the II-III loop may be the later, rate-limiting steps of the folding process.  相似文献   

20.
BtuB is a large outer-membrane β-barrel protein that belongs to a class of active transport proteins that are TonB-dependent. These TonB-dependent transporters are based upon a 22-stranded antiparallel β-barrel, which is notably asymmetric in its length. Here, site-directed spin labeling and simulated annealing were used to locate the membrane lipid interface surrounding BtuB when reconstituted into phosphatidylcholine bilayers. Positions on the outer facing surface of the β-barrel and the periplasmic turns were spin-labeled and distances from the label to the membrane interface estimated by progressive power saturation of the electron paramagnetic resonance spectra. These distances were then used as atom-to-plane distance restraints in a simulated annealing routine, to dock the protein to two independent planes and produce a model representing the average position of the lipid phosphorus atoms at each interface. The model is in good agreement with the experimental data; however, BtuB is mismatched to the bilayer thickness and the resulting planes representing the bilayer interface are not parallel. In the model, the membrane thickness varies by 11 Å around the circumference of the protein, indicating that BtuB distorts the bilayer interface so that it is thinnest on the short side of the protein β-barrel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号