首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid matrix of the skin’s stratum corneum plays a key role in the barrier function, which protects the body from desiccation. The lipids that make up this matrix consist of ceramides, cholesterol, and free fatty acids, and can form two coexisting crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). To fully understand the skin barrier function, information on the molecular arrangement of the lipids in the unit cell of these lamellar phases is very desirable. To determine this arrangement in previous studies, we examined the molecular arrangement of the SPP. In this study, neutron diffraction studies were performed to obtain information on the molecular arrangement of the LPP. The diffraction pattern reveals nine diffraction orders attributed to the LPP with a repeating unit of 129.4 ± 0.5 Å. Using D2O/H2O contrast variation, the scattering length density profiles were calculated for protiated samples and samples that included either the perdeuterated acyl chain of the most abundant ceramide or the most abundant perdeuterated fatty acid. Both perdeuterated chains are predominantly located in the central part of the unit cell with substantial interdigitation of the acyl chains in the unit cell center. However, a fraction of the perdeuterated chains is also located near the border of the unit cell with their acyl chains directing toward the center. This arrangement of lipids in the LPP unit cell corresponds with the location of their lipid headgroups at the border and also inside of the unit cell at a well-defined position (±21 Å from the unit cell center), indicative of a three-layer lipid arrangement within the 129.4 ± 0.5 Å repeating unit.  相似文献   

2.
The intercellular lipid matrix of the skin’s stratum corneum serves to protect the body against desiccation and simultaneously limits the passage of drugs and other xenobiotics into the body. The matrix is made up of ceramides, free fatty acids, and cholesterol, which are organized as two coexisting crystalline lamellar phases. In studies reported here, we sought to use the technique of neutron diffraction, together with the device of isotopic (H/D) substitution, to determine the molecular architecture of the lamellar phase having a repeat distance of 53.9 ± 0.3 Å. Using hydrogenous samples as well as samples incorporating perdeuterated (C24:0) fatty acids and selectively deuterated cholesterol, the diffraction data obtained were used to construct neutron scattering length density profiles. By this means, the locations within the unit cell were determined for the cholesterol and fatty acids. The cholesterol headgroup was found to lie slightly inward from the unit cell boundary and the tail of the molecule located 6.2 ± 0.2 Å from the unit cell center. The fatty acid headgroups were located at the unit cell boundary with their acyl chains straddling the unit cell center. Based on these results, a molecular model is proposed for the arrangement of the lipids within the unit cell.  相似文献   

3.
The intercellular lipid matrix of the skin’s stratum corneum serves to protect the body against desiccation and simultaneously limits the passage of drugs and other xenobiotics into the body. The matrix is made up of ceramides, free fatty acids, and cholesterol, which are organized as two coexisting crystalline lamellar phases. In studies reported here, we sought to use the technique of neutron diffraction, together with the device of isotopic (H/D) substitution, to determine the molecular architecture of the lamellar phase having a repeat distance of 53.9 ± 0.3 Å. Using hydrogenous samples as well as samples incorporating perdeuterated (C24:0) fatty acids and selectively deuterated cholesterol, the diffraction data obtained were used to construct neutron scattering length density profiles. By this means, the locations within the unit cell were determined for the cholesterol and fatty acids. The cholesterol headgroup was found to lie slightly inward from the unit cell boundary and the tail of the molecule located 6.2 ± 0.2 Å from the unit cell center. The fatty acid headgroups were located at the unit cell boundary with their acyl chains straddling the unit cell center. Based on these results, a molecular model is proposed for the arrangement of the lipids within the unit cell.  相似文献   

4.
The goal of this study was to investigate the nanostructure of SC lipid model membranes comprising the most relevant SC lipids such as the unique-structured ω-acylceramide [EOS] in a near natural ratio with neutron diffraction. In models proposed recently the presence of ceramide [EOS] and FFA are necessary for the formation of one of the two existent crystalline lamellar phases of the SC lipids, the long-periodicity phase as well as for the normal barrier function of the SC. The focus of this study was placed on the influence of the FFA BA on the membrane structure and its localization within the membrane based on the ceramides [EOS] and [AP]. The internal nanostructure of such membranes was obtained by Fourier synthesis from the experimental diffraction patterns. The resulting neutron scattering length density profiles showed that the exceptionally long ceramide [EOS] is arranged in a short-periodicity phase created by ceramide [AP] by spanning through the whole bilayer and extending even further into the adjacent bilayer. Specifically deuterated BA allowed us to determine the exact position of this FFA inside this SC lipid model membrane. Furthermore, hydration experiments showed that the presented SC mimic system shows an extremely small intermembrane hydration of ∼1 Å, consequently the headgroups of the neighboring leaflets are positioned close to each other.  相似文献   

5.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

6.
This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.1: 0.7: 1) based stratum corneum modelling system. By adding specifically deuterated ceramides-[NP]-D3, [AP]-D3, and [EOS]-br-D3, detailed information on the lamellar and the nanostructure of the system was obtained. For the short periodicity phase a natural-like lamellar repeat distance of 5.47?±?0.02?nm was observed, similar to the [NP]/[AP] base system without the [EOS]-br. Unlike in this system the ceramides here were slightly tilted, hinting towards a slightly less natural arrangement. Due to the deuteration it was possible to observe that the long ceramide chains were overlapping in the lamellar mid-plane. This is considered to be an important feature for the natural stratum corneum. Despite the presence of a ceramide [EOS] analogue – able to form a long phase arrangement – no distinct long periodicity phase was formed, despite a slightly higher than natural ω-acyl ceramide ratio of 10?mol%. The deuterated variant of this ceramide determined that the very long ceramide was integrated into the short periodicity phase, spanning multiple layers instead. The – compared to the base system – unchanged repeat distance highlights the stability of this structure. Furthermore, the localisation of the very long ceramide in the short periodicity phase indicates the possibility of a crosslinking effect and thus a multilayer stabilizing role for the ceramide [EOS]. It can be concluded, that additionally to the mere presence of ceramide-[EOS] more complex conditions have to be met in order to form this long phase. This has to be further investigated in the future.  相似文献   

7.
The superficial layer of the skin, the stratum corneum, is the main barrier for diffusion of substances across the skin. The stratum corneum is composed of corneocytes embedded in lipid lamellae. In previous studies two lamellar phases have been identified with periodicities of 6.4 and 13.4 nm of which the 13.4 nm phase (long periodicity phase = LPP) is considered to be very important for the skin banier function. The main lipid classes in stratumcorneum are ceramides, free fatty acids and cholesterol. Until now 8 subclassesof ceramides are identified in human stratum corneum referred to as ceramide 1 to 8. Studies with mixtures prepared with isolated human ceramides revealed that cholesterol and ceramides are very important for the formation of the lamellar phases. After addition of free fatty acids the lipids are organised in an orthorhombic packing with a small proportion of lipids in a liquid phase. Our most recent results show that the presence of ceramide 1 and the formation of a liquid phase are crucial elements for the formation of the LPP. These observations and the broad-narrowbroad sequence of lipid layers in the LPP led us to propose a molecular model for this phase. This consists of one narrow central lipid layer with fluid domains with on both sides a broad layer with a crystalline structure. This model is referred to as `the sandwich model'.  相似文献   

8.
Understanding the lipid arrangement within the skin’s outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.  相似文献   

9.
The lipid matrix in stratum corneum (SC) plays a key role in the barrier function of the mammalian skin. The major lipids are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA). Especially the unique-structured omega-acylceramide CER[EOS] is regarded to be essential for skin barrier properties by inducing the formation of a long-periodicity phase of 130 angstroms (LPP). In the present study, the arrangement of CER[EOS], either mixed with CER[AP] and CHOL or with CER[AP], CHOL and palmitic acid (PA), inside a SC lipid model membrane has been studied for the first time by neutron diffraction. For a mixed CER[EOS]/CER[AP]/CHOL membrane in a partly dehydrated state, the internal membrane nanostructure, i.e. the neutron scattering length density profile in the direction normal to the surface, was obtained by Fourier synthesis from the experimental diffraction patterns. The membrane repeat distance is equal to that of the formerly used SC lipid model system composed of CER[AP]/CHOL/PA/ChS. By comparing both the neutron scattering length density profiles, a possible arrangement of synthetic long-chain CER[EOS] molecules inside a SC lipid model matrix is suggested. The analysis of the internal membrane nanostructure implies that one CER[EOS] molecule penetrates from one membrane layer into an adjacent layer. A 130 angstroms periodicity phase could not be observed under experimental conditions, either in CER/CHOL mixtures or in CER/CHOL/FFA mixture. CER[EOS] can be arranged inside a phase with a repeat unit of 45.2 angstroms which is predominately formed by short-chain CER[AP] with distinct polarity.  相似文献   

10.
The present paper describes the influence of the ceramides with phytosphingosine base, N-stearoylphytosphingosine (Cer[NP]) and alpha-hydroxy-N-stearoylphytosphingosine (Cer[AP]), on the structure and properties of multilamellar (MLVs) and unilamellar vesicles (ULVs) of dimyristoylphosphatidylcholine (DMPC). The lamellar repeat distance, D, has been measured at various temperatures using small angle X-ray diffraction. The incorporation of ceramides into the DMPC membrane causes larger D compared to pure DMPC membrane. For both ceramide types, at 32 degrees C, there is a linear relationship between the D value and the ceramide concentration. However, there is no such dependence at 13 or 60 degrees C. Unlike Cer[AP], Cer[NP] induces a new phase with a repeat distance of 38.5A. The membrane thickness and the vesicle radius of ULVs in water and in sucrose solution were calculated from small angle neutron scattering curves. Phytosphingosine ceramides increase both the membrane thickness and the radius in comparison to pure DMPC ULVs. The stability of ULVs in time was studied by dynamic light scattering. Both ceramides induce an aggregation of the ULVs into micrometer sized non-multilamellar structures in pure water. Presence of sucrose in the environment averts the vesicle aggregation.  相似文献   

11.
The stratum corneum is the outermost layer of human skin and the primary barrier toward the environment. The barrier function is maintained by stacked layers of saturated long-chain ceramides, free fatty acids, and cholesterol. This structure is formed through a reorganization of glycosylceramide-based bilayers with cubic-like symmetry into ceramide-based bilayers with stacked lamellar symmetry. The process is accompanied by deglycosylation of glycosylceramides and dehydration of the skin barrier lipid structure. Using coarse-grained molecular dynamics simulation, we show the effects of deglycosylation and dehydration on bilayers of human skin glycosylceramides and ceramides, folded in three dimensions with cubic (gyroid) symmetry. Deglycosylation of glycosylceramides destabilizes the cubic lipid bilayer phase and triggers a cubic-to-lamellar phase transition. Furthermore, subsequent dehydration of the deglycosylated lamellar ceramide system closes the remaining pores between adjacent lipid layers and locally induces a ceramide chain transformation from a hairpin-like to a splayed conformation.  相似文献   

12.
The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.  相似文献   

13.
Lipid suspensions containing 2:1:1 skin ceramides:palmitic acid:cholesterol, similar to the lipid composition found in the extracellular matrix of skin stratum corneum, were analyzed by X-ray diffraction methods. These suspensions gave a sharp wide-angle reflection at 4.1 A, indicating tight hydrocarbon chain packing that would function as a water barrier, and low-angle lamellar diffraction with a repeat period near 130 A, similar to that previously recorded from intact stratum corneum. The lamellar repeat increased from 121 A at pH 6 to 133 A at pH 8.5, allowing phase angles of the lamellar data to be obtained by a sampling theorem "swelling" analysis. Electron density profiles showed that each repeating unit contained two asymmetric bilayers, with a fluid space on one side of the bilayer that increased with increasing pH, due to electrostatic repulsion between bilayers because of ionization of the palmitic acid. Profiles obtained from lamellae with cholesterol sulfate partially substituted for cholesterol showed large density increases on that same side of the bilayer, indicating that cholesterol is asymmetrically distributed in each bilayer. A molecular model was developed postulating that this asymmetry is due to the exclusion of cholesterol from lipid monolayers containing the ester-linked unsaturated (linoleic) hydrocarbon chain of skin ceramide 1. This model can explain the altered organization of extracellular lamellae in epidermal cysts (P. W. Wertz, D. C. Swartzendruber, K. C. Madison, D. T. Downing. 1987. J. Invest. Dermatol. 89:419-425) where the ester-linked chains have a higher percentage of saturated fatty acids than found in normal epidermis.  相似文献   

14.
D. Groen 《Biophysical journal》2009,97(8):2242-2249
The characteristic 13-nm lamellar phase that is formed by lipids in the outermost layer of the skin, the stratum corneum (SC), is very important for the barrier function of the skin. To gain more insight into the molecular organization of this lamellar phase, we performed small-angle x-ray diffraction (SAXD) using various lipid mixtures mimicking the lipid composition in SC. In the SAXD pattern of each mixture, at least seven diffraction orders were observed, attributed to the lamellar phase with a repeat distance ranging from 12.1 to 13.8 nm. Using the sampling method based on the variation in repeat distance, we selected phase angles for the first six diffraction orders. Using these phase angles for the lamellar phase, a high-resolution electron density distribution could be calculated. Subsequently, from SAXD patterns of isolated SC, the electron density distribution of the lamellar phase was also calculated and appeared to be very similar to that in the lipid mixtures. This demonstrates that the lipid mixtures serve as an excellent model for the lipid organization in SC, not only with respect to the repeat distance, but also in terms of the electron density distribution within the unit cell.  相似文献   

15.
Human stratum corneum (SC) consists of several layers of keratinized corneocytes embedded in a lipid matrix of ordered lamellar structure which is considered to constitute the major barrier to percutaneous penetration. Artificial mixtures of SC lipids are often used as model systems to mimic the skin barrier or to investigate the effects of substances on the phase behaviour of the models. In the present study a SC lipid model composed of cholesterol, fatty acids and ceramides was used to investigate the effect of three different commercially available ceramide types on the microstructure and the physicochemical behaviour of the lipids. Polarized light microscopy, transmission electron microscopy, small-angle X-ray diffraction, wide-angle X-ray diffraction and differential scanning calorimetry (DSC) were used for physicochemical characterization. The results revealed a lamellar structure for all models but showed differences with regard to the thermal and optical behaviour depending obviously on the composition of the ceramide mixtures. A model containing a mixture of Cer[AS] was comparable to human SC lipids.  相似文献   

16.
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.  相似文献   

17.
18.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

19.
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide’s acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.  相似文献   

20.
Lipid lamellae present in the outermost layer of the skin protect the body from uncontrolled water loss. In human stratum corneum (SC), two crystalline lamellar phases are present, which contain mostly cholesterol, free fatty acids, and nine types of free ceramides. Previous studies have demonstrated that the SC lipid organization can be mimicked with model mixtures based on isolated SC lipids. However, those studies are hampered by low availability and high interindividual variability of the native tissue. To elucidate the role of each lipid class in the formation of a competent skin barrier, the use of synthetic lipids would offer an alternative. The small- and wide-angle X-ray diffraction results of the present study show for the first time that synthetic lipid mixtures, containing only three synthetic ceramides, reflect to a high extent the SC lipid organization. Both an appropriately chosen preparation method and lipid composition promote the formation of two characteristic lamellar phases with repeat distances similar to those found in native SC. From all synthetic lipid mixtures examined, equimolar mixtures of cholesterol, ceramides, and free fatty acids equilibrated at 80 degrees C resemble to the highest extent the lamellar and lateral SC lipid organization, both at room and increased temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号