首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sticky chain model has been proposed to describe the unfolding of spectrin network under applied mechanical loads. With the model, the response of a red blood cell (RBC) under static and cyclic shear loading has been predicted, which agrees qualitatively with relevant experimental results.  相似文献   

2.
The dynamics of shear disaggregation of red blood cells in a flow channel   总被引:1,自引:0,他引:1  
S Chien  S S Feng  M Vayo  L A Sung  S Usami  R Skalak 《Biorheology》1990,27(2):135-147
Red blood cell (RBC) rouleaux were formed in a flow channel in the presence of 2 g/dl dextran (molecular weight 76,000). The partial separation of RBC rouleau doublets adhering to the floor of the flow channel in response to small oscillatory shear stresses was observed experimentally. Theoretical analyses on displacement and drag force were performed to determine whether the motion of the cell involves membrane rotation (i.e., rolling) or sliding. From the experimental data and the results of theoretical analyses, it is concluded that, under the conditions of the experiments, the RBCs in a doublet separate from each other by rolling, rather than sliding of the sheared cell.  相似文献   

3.
《Biophysical journal》2022,121(18):3393-3410
In this article, extensive three-dimensional simulations are conducted for tank-treading (TT) red blood cells (RBCs) in shear flow with different cell viscous properties and flow conditions. Apart from recent numerical studies on TT RBCs, this research considers the uncertainty in cytoplasm viscosity, covers a more complete range of shear flow situations of available experiments, and examines the TT behaviors in more details. Key TT characteristics, including the rotation frequency, deformation index, and inclination angle, are compared with available experimental results of similar shear flow conditions. Fairly good simulation-experiment agreements for these parameters can be obtained by adjusting the membrane viscosity values; however, different rheological relationships between the membrane viscosity and the flow shear rate are noted for these comparisons: shear thinning from the TT frequency, Newtonian from the inclination angle, and shear thickening from the cell deformation. Previous studies claimed a shear-thinning membrane viscosity model based on the TT frequency results; however, such a conclusion seems premature from our results and more carefully designed and better controlled investigations are required for the RBC membrane rheology. In addition, our simulation results reveal complicate RBC TT features and such information could be helpful for a better understanding of in vivo and in vitro RBC dynamics.  相似文献   

4.
Invasion of red blood cells by malaria parasites   总被引:22,自引:0,他引:22  
Cowman AF  Crabb BS 《Cell》2006,124(4):755-766
The malaria parasite is the most important member of the Apicomplexa, a large and highly successful phylum of intracellular parasites. Invasion of host cells allows apicomplexan parasites access to a rich source of nutrients in a niche that is largely protected from host defenses. All Apicomplexa adopt a common mode of host-cell entry, but individual species incorporate unique features and utilize a specific set of ligand-receptor interactions. These adhesins ultimately connect to a parasite actin-based motor, which provides the power for invasion. While some Apicomplexa can invade many different host cells, the disease-associated blood-stage form of the malaria parasite is restricted to erythrocytes.  相似文献   

5.
6.
An experimental investigation of the wall shear stress distribution downstream of a backward-facing step is carried out. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non-Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non-Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non-Newtonian Carreau-Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau-Yasuda model.  相似文献   

7.
Three membrane thermotropic transitions at 8, 20, and 40 degrees C have been detected in human red blood cells (RBC) by using spin-labeled stearic acids. Red blood cells infected in vitro by Plasmodium falciparum showed the disappearance of the 8 degrees C transition and a lowering of the 40 degrees C transition to 32 degrees C. The disappearance of the 8 degrees C transition was observed in synchronized cultures of P. falciparum trophozoites as well as in mouse RBC infected in vivo by an asynchronous population of P. berghei. Furthermore, erythrocytes infected by P. falciparum showed an increase in the phosphorylation of protein 4.1. This protein was shown previously to be involved in the 8 degrees C transition, (T. Forte, T. L. Leto, M. Minetti, and V. T. Marchesi, Biochemistry 24, 7876-7880 (1985). Our results suggest that the malaria parasite invasion produces a disorganization of the protein 4.1-membrane interaction.  相似文献   

8.
Tank-treading (TT) motion is established in optically trapped, live red blood cells (RBCs) held in shear flow and is systematically investigated under varying shear rates, temperature (affecting membrane viscosity), osmolarity (resulting in changes in RBC shape and cytoplasmic viscosity), and viscosity of the suspending medium. TT frequency is measured as a function of membrane and cytoplasmic viscosity, the former being four times more effective in altering TT frequency. TT frequency increases as membrane viscosity decreases, by as much as 10% over temperature changes of only 4°C at a shear rate of ∼43 s−1. A threshold shear rate (1.5 ± 0.3 s−1) is observed below which the TT frequency drops to zero. TT motion is also observed in shape-engineered (spherical) RBCs and those with cholesterol-depleted membranes. The TT threshold is less evident in both cases but the TT frequency increases in the latter cells. Our findings indicate that TT motion is pervasive even in folded and deformed erythrocytes, conditions that occur when such erythrocytes flow through narrow capillaries.  相似文献   

9.
The bulk rheology of close-packed red blood cells in shear flow   总被引:1,自引:0,他引:1  
T W Secomb  S Chien  K M Jan  R Skalak 《Biorheology》1983,20(3):295-309
A theoretical analysis is made of the dynamical behavior and bulk rheology of close-packed red blood cell suspensions subjected to simple shear flow. The model for the polyhedral cell shapes and tank-treading membrane motion developed in the companion paper (1) is used. The flow in the thin lubricating plasma layers between cells is analyzed taking into account the mechanical properties of the membrane at the corner regions of sharp membrane curvature. This leads to predictions for the apparent viscosity as a function of hematocrit and shear rate. Good agreement with experimental results is obtained at moderate and high shear rates (above 20 s-1). At lower shear rates, a rapid rise in apparent viscosity has been found experimentally, and the mechanisms leading to this behavior are examined.  相似文献   

10.
The state of leukocyte and erythrocyte adhesiveness/aggregation was determined in the peripheral blood of 382 patients with infection/inflammation as well as in 72 controls by using a simple slide test and image analysis. A highly significant correlation (r = 0.4, n = 455, p < 0.001) was found between the state of leukocyte and erythrocyte adhesiveness/aggregation. The extent of both leukocyte and erythrocyte aggregation correlated with the concentration of fibrinogen. Significant aggregation of leukocytes with erythrocytes was noted as well. We conclude that both leukocyte and erythrocyte aggregation occur in the peripheral blood of patients with infection/inflammation. Such cell aggregation, which might have detrimental rheological consequences, can be detected by using our novel technique.  相似文献   

11.
A simple and sensitive approach for detection of malarial parasite in blood samples is demonstrated. The approach exploits our finding that, in hypertonic buffer, a normal red blood cell (RBC) rotates by itself when trapped by an optical tweezers. The rotational speed increases linearly at lower trap-beam powers and more rapidly at higher powers. In contrast, under the same experimental conditions, RBC having a malarial parasite does not rotate. The rotational speeds of other RBCs from malaria-infected sample are of an order of magnitude less than that for normal RBC and also increase much more slowly with an increase in trap beam power than that for normal RBC. The difference in rotational speeds could be exploited for the diagnosis of malaria.  相似文献   

12.
Human red blood cells (RBCs) in a solution form rouleaux patterns under various conditions. The degree of rouleaux formation depends on, for example, the concentration and molecular weight of added large molecules. We present a two-dimensional discrete cellular space model in which an RBC is represented by a rectangle and differential adhesion is assumed among the longer (a-site), the shorter (b-site) sides of the rectangle and the solvent. The total sum of the adhesion energy is assumed to guide the step-by-step change of the model cell configuration and also define absolutely stable patterns. We compare the set of absolutely stable patterns and cell aggregate patterns for both actual and computer-simulated cases to obtain the basic validity of our framework. Then we proceed to assess the effects of added high polymers to the adhesion parameters. We first note that under suitable conditions, decrease in a-site-solvent affinity is necessary to have complex patterns rather than increase of a-a affinity. The hypothesis that addition of high polymers reduce the a-site-solvent affinity is concomitant with a newly proposed osmotic stress theory. The parameter fitting results for the experimental phase change curves can also be interpreted as supporting more the new theory than existing traditional explanations.  相似文献   

13.
Three opposing pathways are proposed for the release of malaria parasites from infected erythrocytes: coordinated rupture of the two membranes surrounding mature parasites; fusion of erythrocyte and parasitophorus vacuolar membranes (PVM); and liberation of parasites enclosed within the vacuole from the erythrocyte followed by PVM disintegration. Rupture by cell swelling should yield erythrocyte ghosts; membrane fusion is inhibited by inner-leaflet amphiphiles of positive intrinsic curvature, which contrariwise promote membrane rupture; and without protease inhibitors, parasites would leave erythrocytes packed within the vacuole. Therefore, we visualized erythrocytes releasing P. falciparum using fluorescent microscopy of differentially labeled membranes. Release did not yield erythrocyte ghosts, positive-curvature amphiphiles did not inhibit release but promoted it, and release of packed merozoites was shown to be an artifact. Instead, two sequential morphological stages preceded a convulsive rupture of membranes and rapid radial discharge of separated merozoites, leaving segregated internal membrane fragments and plasma membrane vesicles or blebs at the sites of parasite egress. These results, together with the modulation of release by osmotic stress, suggest a pathway of parasite release that features a biochemically altered erythrocyte membrane that folds after pressure-driven rupture of membranes.  相似文献   

14.
Aggregate formation of red blood cells (RBCs) in a postcapillary venular bifurcation is investigated with three-dimensional computer simulations using the Chimera grid method. Interaction energy between the RBCs is modelled by a depletion interaction theory; RBCs are modelled as rigid oblate ellipsoids. The cell–cell interactions of RBCs are strongly dependent on vessel geometry and shear rates. The experimental data on vessel geometry, pseudoshear rates, and Dextran concentration obtained in our previous in vivo RBC aggregation study in postcapillary venules of the rat spinotrapezius muscle were used to simulate RBC aggregation. The computational results were compared to the experimental results from the in vivo study. The results show that cells have a larger tendency to form an aggregate under reduced flows. Aggregate formation also depends on the angle and location of the cells before they enter the bifurcation region. Comparisons with experimental data are discussed.  相似文献   

15.
Recently, while studying erythrocytic apoptosis during Plasmodium yoelii infection, we observed an increase in the levels of non-parasitised red blood cell (nRBC) apoptosis, which could be related to malarial anaemia. Therefore, in the present study, we attempted to investigate whether nRBC apoptosis is associated with the peripheral RBC count, parasite load or immune response. To this end, BALB/c mice were infected with P. yoelii 17XL and nRBC apoptosis, number of peripheral RBCs, parasitaemia and plasmatic levels of cytokines, nitric oxide and anti-RBC antibodies were evaluated at the early and late stages of anaemia. The apoptosis of nRBCs increased at the late stage and was associated with parasitaemia, but not with the intensity of the immune response. The increased percentage of nRBC apoptosis that was observed when anaemia was accentuated was not related to a reduction in peripheral RBCs. We conclude that nRBC apoptosis in P. yoelii malaria appears to be induced in response to a high parasite load. Further studies on malaria models in which acute anaemia develops during low parasitaemia are needed to identify the potential pathogenic role of nRBC apoptosis.  相似文献   

16.
By means of glutaraldehyde fixation, human erythrocytes are "frozen" while suspended in turbulent shear flow. As the shearing is increased in steps from 100 to 2,500 dyn/cm2, the deformed cells evolve gradually toward a smooth ellipsoidal shape. At stresses above 2,500 dyn/cm2, approximately, fragmentation of the cells occurs with a concomitant increase in free hemoglobin content of the suspending medium. The photographic evidence suggests that the cells rupture in tension in the bulk flow.  相似文献   

17.
Miao J  Cui L 《Nature protocols》2011,6(2):140-146
Malaria research often requires isolation of individually infected red blood cells (RBCs) or of a homogenous parasite population derived from a single parasite (clone). Traditionally, isolation of individual, parasitized RBCs or parasite cloning is achieved by limiting dilution or micromanipulation. This protocol describes a method for more efficient cloning of the malaria parasite; the method uses a cell sorter to rapidly isolate Plasmodium falciparum-infected RBCs singly. By gating the parameters of forward-angle light scatter and side-angle light scatter in a cell sorter, singly infected RBCs can be isolated and automatically deposited into a 96-well culture plate within 1 min. Including a Percoll purification step; the entire procedure to seed a 96-well plate with singly infected RBCs can take <40 min. This highly efficient single-cell sorting protocol should be useful for cloning of both laboratory parasite populations from genetic manipulation experiments and clinical samples.  相似文献   

18.
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9°C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.  相似文献   

19.
Genetic factors are a major determinant of child survival in malaria endemic countries. Identifying which genes are involved and how they affect the malaria disease risk potentially offers a powerful mechanism through which to learn more about the host-parasite relationship. The past few years have seen significant progress towards achieving this goal for some of the best-known malaria resistance genes that determine the structure or function of red blood cells: Gerbich blood group antigen negativity; polymorphisms of the complement receptor genes (most notably CR1); Southeast Asian ovalocytosis; pyruvate kinase deficiency; haemoglobin E; the sickle cell trait; and alpha-thalassaemia are all examples. The challenge for the future must be to translate such advances into fresh approaches to the prevention and treatment of malaria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号