首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The information that may be obtained from a fluorescence correlation spectroscopic study of a nonideal solution is considered. If all of the macromolecules in a two-component solution are fluorescently labeled, the mutual diffusion coefficient will be measured. If only a few of the macromolecules in a solution are fluorescently labeled, the tracer diffusion coefficient will be obtained. Two nonideal systems that probably may usefully be studied with fluorescence correlation spectroscopy are proposed. The application of fluorescence correlation spectroscopy to studies of lateral diffusion in biological membranes is discussed; the form of the contribution to the fluorescence correlation spectrum of bulk motion within a membrane is noted.  相似文献   

2.
Details about molecular membrane dynamics in living cells, such as lipid-protein interactions, are often hidden from the observer because of the limited spatial resolution of conventional far-field optical microscopy. The superior spatial resolution of stimulated emission depletion (STED) nanoscopy can provide new insights into this process. The application of fluorescence correlation spectroscopy (FCS) in focal spots continuously tuned down to 30 nm in diameter distinguishes between free and anomalous molecular diffusion due to, for example, transient binding of lipids to other membrane constituents, such as lipids and proteins. We compared STED-FCS data recorded on various fluorescent lipid analogs in the plasma membrane of living mammalian cells. Our results demonstrate details about the observed transient formation of molecular complexes. The diffusion characteristics of phosphoglycerolipids without hydroxyl-containing headgroups revealed weak interactions. The strongest interactions were observed with sphingolipid analogs, which showed cholesterol-assisted and cytoskeleton-dependent binding. The hydroxyl-containing headgroup of gangliosides, galactosylceramide, and phosphoinositol assisted binding, but in a much less cholesterol- and cytoskeleton-dependent manner. The observed anomalous diffusion indicates lipid-specific transient hydrogen bonding to other membrane molecules, such as proteins, and points to a distinct connectivity of the various lipids to other membrane constituents. This strong interaction is different from that responsible for forming cholesterol-dependent, liquid-ordered domains in model membranes.  相似文献   

3.
4.
Steady-state and time-resolved fluorescence spectroscopy has been used to obtain information on oxidation processes and associated dynamical and structural changes in model membrane bilayers made from single unilamellar vesicles (SUV's) of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed with increasing amounts of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC). The highly unsaturated arachidonoyl chain containing four double bonds is prone to oxidation. Lipid oxidation was initiated chemically by a proper oxidant and could be followed on line via the fluorescence changes of an incorporated fluorescent lipophilic fatty acid: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BP-C11). The oxidation rate increases with an increasing amount of SAPC. Size measurements of different SUV's incorporated with a trace amount of a phosphatidylcholine analogue of BP-C11 using fluorescence correlation spectroscopy have demonstrated that an increase of lipid unsaturation results in smaller sized SUV's and therefore to a larger curvature of the outer bilayer leaflet. This suggests that the lipid-lipid spacing has increased and that the unsaturated fatty acyl chains are better accessible for the oxidant. Oxidation results in some characteristic physical changes in membrane dynamics and structure, as indicated by the use of specific fluorescence probes. Fluorescence measurements of both dipyrenyl- and diphenylhexatriene-labelled PC introduced in non-oxidised and oxidised DOPC-SAPC membranes clearly show that the microfluidity (local fluidity at the very site of the probes) significantly decreases when the oxidised SAPC content increases in the lipid mixture. A similar effect is observed from the lateral diffusion experiments using monopyrenyl PC in the same membrane systems: the lateral diffusion is distinctly slower in oxidised membranes.  相似文献   

5.
During retrovirus assembly, the polyprotein Gag directs protein multimerization, membrane binding, and RNA packaging. It is unknown whether assembly initiates through Gag-Gag interactions in the cytosol or at the plasma membrane. We used two fluorescence techniques-two-photon fluorescence resonance energy transfer and fluorescence correlation spectroscopy-to examine Rous sarcoma virus Gag-Gag and -membrane interactions in living cells. Both techniques provide strong evidence for interactions between Gag proteins in the cytoplasm. Fluorescence correlation spectroscopy measurements of mobility suggest that Gag is present in large cytosolic complexes, but these complexes are not entirely composed of Gag. Deletion of the nucleocapsid domain abolishes Gag interactions and membrane targeting. Deletion of the membrane-binding domain leads to enhanced cytosolic interactions. These results indicate that Gag-Gag interactions occur in the cytosol, are mediated by nucleocapsid domain, and are necessary for membrane targeting and budding. These methods also have general applicability to in vivo studies of protein-protein and -membrane interactions involved in the formation of complex macromolecular structures.  相似文献   

6.
Using fluorescence correlation spectroscopy, we measured a dissociation constant of 20 nM between EGFP-labeled LcrV from Yersinia pestis and its cognate membrane-bound protein YopB inserted into a lipid nanodisc. The combination of fluorescence correlation spectroscopy and nanodisc technologies provides a powerful approach to accurately measure binding constants of interactions between membrane bound and soluble proteins in solution. Straightforward sample preparation, acquisition, and analysis procedures make this combined technology attractive for accurately measuring binding kinetics for this important class of protein-protein interactions.  相似文献   

7.
Guo L  Smith-Dupont KB  Gai F 《Biochemistry》2011,50(12):2291-2297
Recently, we have shown that association with an antimicrobial peptide (AMP) can drastically alter the diffusion behavior of the constituent lipids in model membranes (Biochemistry 49, 4672-4678). In particular, we found that the diffusion time of a tracer fluorescent lipid through a confocal volume measured via fluorescence correlation spectroscopy (FCS) is distributed over a wide range of time scales, indicating the formation of stable and/or transient membrane species that have different mobilities. A simple estimate, however, suggested that the slow diffusing species are too large to be attributed to AMP oligomers or pores that are tightly bound to a small number of lipids. Thus, we tentatively ascribed them to membrane domains and/or clusters that possess distinctively different diffusion properties. In order to further substantiate our previous conjecture, herein we study the diffusion behavior of the membrane-bound peptide molecules using the same AMPs and model membranes. Our results show, in contrast to our previous findings, that the diffusion times of the membrane-bound peptides exhibit a much narrower distribution that is more similar to that of the lipids in peptide-free membranes. Thus, taken together, these results indicate that while AMP molecules prompt domain formation in membranes, they are not tightly associated with the lipid domains thus formed. Instead, they are likely located at the boundary regions separating various domains and acting as mobile fences.  相似文献   

8.
Recent advances in fluorescence correlation spectroscopy   总被引:7,自引:0,他引:7  
Fluorescence correlation spectroscopy is a method in which fluctuations in the fluorescence arising from a very small sample volume are correlated to obtain information about the processes giving rise to the fluctuations. Recent progress has been made in methodologies such as two-photon excitation, photon counting histogram analysis, cross-correlation, image correlation and evanescent excitation. Fluorescence correlation spectroscopy techniques have been applied to several biological processes, including fluorescent protein photodynamics, binding equilibria and kinetics, protein oligomerization, nucleic acid interactions, and membrane and intracellular dynamics.  相似文献   

9.
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.  相似文献   

10.
Here we discuss the application of scanning fluorescence correlation spectroscopy (SFCS) using continuous wave excitation to analyze membrane dynamics. The high count rate per molecule enables the study of very slow diffusion in model and cell membranes, as well as the application of two-foci fluorescence cross-correlation spectroscopy for parameter-free determination of diffusion constants. The combination with dual-color fluorescence cross-correlation spectroscopy with continuous or pulsed interleaved excitation allows binding studies on membranes. Reduction of photobleaching, higher reproducibility, and stability compared to traditional FCS on membranes, and the simple implementation in a commercial microscopy setup make SFCS a valuable addition to the pool of fluorescence fluctuation techniques.  相似文献   

11.
Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned.  相似文献   

12.
Quinacrine is a fluorescence probe useful for studying the effect of local anesthetics. The interaction of quinacrine and sarcoplasmic reticulum membranes measured by fluorescence spectroscopy indicates the presence of a saturable binding site. Typical local anesthetics are able to displace quinacrine bound to heavy sarcoplasmic reticulum membranes. The effectiveness of that displacement decreases in the order dibucaine greater than tetracaine greater than benzocaine greater than lidocaine greater than procaine greater than procainamide, indicating that the size and hydrophobicity of quinacrine are major determinants in the binding process. The use of radioactive tracer and a rapid filtration technique reveals that quinacrine interacts, at lower concentrations, with sarcoplasmic reticulum membranes by blocking the Ca2+-induced Ca2+ release. Higher quinacrine concentrations also affect the Ca2+-pump activity.  相似文献   

13.
Fluorescence correlation spectroscopy (FCS) enables direct observation of the translational diffusion of single fluorescent molecules in solution. When fluorescent hapten binds to antibody, analysis of FCS data yields the fractional amounts of free and bound hapten, allowing determination of the equilibrium binding constant. Equilibrium dissociation constants of anti-digoxin antibodies and corresponding fluorescein-labeled digoxigenin obtained by FCS and fluorescence polarization measurements are identical. It is also possible to follow a competitive displacement of the tracer from the antibody by unlabeled hapten using FCS in an immunoassay format. The fluorescence polarization immunoassay for vancomycin detection was used to test the FCS approach. Fitting of the FCS data for the molar fractions of free and bound fluorescein-labeled vancomycin yielded a calibration curve which could serve for determination of the vancomycin concentration in biological samples.  相似文献   

14.
Barré P  Zschörnig O  Arnold K  Huster D 《Biochemistry》2003,42(27):8377-8386
Structural and dynamical features of the B18 peptide from the sea urchin sperm binding protein were determined in the crystalline state and in zwitterionic lipid bilayers at a peptide:lipid molar ratio of 1:12 using solid-state NMR spectroscopy. The study was focused on three (13)C and (15)N uniformly labeled leucine residues, which were introduced into three different B18 peptides at positions evenly distributed along the B18 primary structure. Isotropic (13)C and (15)N chemical shift measurements showed that while B18 possesses a nonhelical and non-sheet-like structure in the crystalline state, the peptide adopts an oligomeric beta-sheet structure in the membrane in the presence of Zn(2+) ions at high peptide:lipid ratio. Torsion angle measurements for the three leucine sites supported these results, with phi torsion angles between -80 degrees and -90 degrees in the crystalline state and between -110 degrees and -120 degrees in the membrane-bound form. These phi torsion angles determined for membrane-bound B18 are consistent with a parallel beta-sheet secondary structure. Analysis of motionally averaged dipolar coupling measurements established an increase of the mobility in the leucine side chains upon binding to the membrane, whereas the backbone mobility remained essentially unchanged, except in the binding site of Zn(2+) ions. This difference in mobility was related to the H-bond network in the parallel beta-sheet structure, which involves the backbone and excludes the side chains of leucine residues. The parallel beta-sheet structure of B18 in the membrane in the presence of Zn(2+) appears to be an active state for the fusion of zwitterionic membranes in the presence of Zn(2+). A fluorescence fusion assay indicated that high B18 concentrations are required to induce fusion in these systems. Therefore, it was hypothesized that the oligomeric beta-sheet secondary structure revealed in the study represents an active state of the peptide in a membrane environment during fusion.  相似文献   

15.
Posokhov YO  Rodnin MV  Lu L  Ladokhin AS 《Biochemistry》2008,47(18):5078-5087
Experimental determination of the free energy stabilizing the structure of membrane proteins in their native lipid environment is undermined by the lack of appropriate methods and suitable model systems. Annexin B12 (ANX) is a soluble protein which reversibly inserts into lipid membranes under mildly acidic conditions, which makes it a good experimental model for thermodynamic studies of folding and stability of membrane proteins. Here we apply fluorescence correlation spectroscopy for quantitative analysis of ANX partitioning into large unilamellar vesicles containing either 25% or 75% anionic lipids. Membrane binding of ANX results in changes of autocorrelation time and amplitude, both of which are used in quantitative analysis. The thermodynamic scheme describing acid-induced membrane interactions of ANX considers two independent processes: pH-dependent formation of a membrane-competent form near the membrane interface and its insertion into the lipid bilayer. Our novel fluorescence lifetime topology method demonstrates that the insertion proceeds via an interfacial refolded intermediate state, which can be stabilized by anionic lipids. Lipid titration measurements are used to determine the free energy of both transmembrane insertion and interfacial penetration, which are found to be similar, approximately -10-12 kcal/mol. The formation of the membrane-competent form, examined in a lipid saturation experiment, was found to depend on the local proton concentration near the membrane interface, occurring with pK = 4.3 and involving the protonation of two residues. Our results demonstrate that fluorescence correlation spectroscopy is a convenient tool for the quantitative characterization of the energetics of transmembrane insertion and that pH-triggered ANX insertion is a useful model for studying the thermodynamic stability of membrane proteins.  相似文献   

16.
《Biophysical journal》2022,121(18):3520-3532
The transient disruption of membranes for the passive permeation of ions or small molecules is a complex process relevant to understanding physiological processes and biotechnology applications. Phenolic compounds are widely studied for their antioxidant and antimicrobial properties, and some of these activities are based on the interactions of the phenolic compound with membranes. Ions are ubiquitous in cells and are known to alter the structure of phospholipid bilayers. Yet, ion-lipid interactions are usually ignored when studying the membrane-altering properties of phenolic compounds. This study aims to assess the role of Ca2+ ions on the membrane-disrupting activity of two phenolic acids and to highlight the role of local changes in lipid packing in forming transient defects or pores. Results from tethered bilayer lipid membrane electrical impedance spectroscopy experiments showed that Ca2+ significantly reduces membrane disruption by caffeic acid methyl ester and caffeic acid. As phenolic acids are known metal chelators, we used UV-vis and fluorescence spectroscopy to exclude the possibility that Ca2+ interferes with membrane disruption by binding to the phenolic compound and subsequently preventing membrane binding. Molecular dynamics simulations showed that Ca2+ but not caffeic acid methyl ester or caffeic acid increases lipid packing in POPC bilayers. The combined data confirm that Ca2+ reduces the membrane-disrupting activity of the phenolic compounds, and that Ca2+-induced changes to lipid packing govern this effect. We discuss our data in the context of ion-induced pores and transient defects and how lipid packing affects membrane disruption by small molecules.  相似文献   

17.
This review describes the application of fluorescence correlation spectroscopy (FCS) for the study of biological membranes. Monitoring the fluorescence signal fluctuations, it is possible to obtain diffusion constants and concentrations for several membrane components. Focusing the attention on lipid bilayers, we explain the technical difficulties and the new FCS-based methodologies introduced to overcome them. Finally, we report several examples of studies which apply FCS on both model and biological membranes to obtain interesting insight in the topic of lateral membrane organization.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) channel interacts with scaffolding and other proteins that are expected to restrict its lateral movement, yet previous studies have reported predominantly free diffusion. We examined the lateral mobility of CFTR channels on live baby hamster kidney cells using three complementary methods. Channels bearing an extracellular biotinylation target sequence were labeled with streptavidin conjugated with fluorescent dyes (Alexa Fluor 488 or 568) or quantum dots (qDot605). Fluorescence recovery after photobleaching and image correlation spectroscopy of the dye-labeled channels revealed a significant immobile population ( approximately 50%), which was confirmed by direct single particle tracking (SPT) of qDot605-labeled CFTR. Adding 10 histidine residues at the C-terminus of CFTR to mask the postsynaptic density 95, Discs large, ZO-1 (PDZ) binding motif abolished its association with EBP50/NHERF1, reduced the immobile fraction, and increased mobility. Other interactions that are not normally detected on this timescale became apparent when binding of PDZ domain proteins was disrupted. SPT revealed that CFTR(His-10) channels diffuse randomly, become immobilized for periods lasting up to 1 min, and in some instances are recaptured at the same location. The impact of transient confinement on the measured diffusion using the three fluorescence techniques were assessed using computer simulations of the biological experiments. Finally, the impact of endosomal CFTR on mobility measurements was assessed by fluorescence correlation spectroscopy. These results reveal unexpected features of CFTR dynamics which may influence its ion channel activity.  相似文献   

19.
The human norepinephrine (NE) transporter (hNET) attenuates neuronal signaling by rapid NE clearance from the synaptic cleft, and NET is a target for cocaine and amphetamines as well as therapeutics for depression, obsessive-compulsive disorder, and post-traumatic stress disorder. In spite of its central importance in the nervous system, little is known about how NET substrates, such as NE, 1-methyl-4-tetrahydropyridinium (MPP+), or amphetamine, interact with NET at the molecular level. Nor do we understand the mechanisms behind the transport rate. Previously we introduced a fluorescent substrate similar to MPP+, which allowed separate and simultaneous binding and transport measurement (Schwartz, J. W., Blakely, R. D., and DeFelice, L. J. (2003) J. Biol. Chem. 278, 9768-9777). Here we use this substrate, 4-(4-(dimethylamino)styrl)-N-methyl-pyridinium (ASP+), in combination with green fluorescent protein-tagged hNETs to measure substrate-transporter stoichiometry and substrate binding kinetics. Calibrated confocal microscopy and fluorescence correlation spectroscopy reveal that hNETs, which are homomultimers, bind one substrate molecule per transporter subunit. Substrate residence at the transporter, obtained from rapid on-off kinetics revealed in fluorescence correlation spectroscopy, is 526 micros. Substrate residence obtained by infinite dilution is 1000 times slower. This novel examination of substrate-transporter kinetics indicates that a single ASP+ molecule binds and unbinds thousands of times before being transported or ultimately dissociated from hNET. Calibrated fluorescent images combined with mass spectroscopy give a transport rate of 0.06 ASP+/hNET-protein/s, thus 36,000 on-off binding events (and 36 actual departures) occur for one transport event. Therefore binding has a low probability of resulting in transport. We interpret these data to mean that inefficient binding could contribute to slow transport rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号