首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freed DM  Khan AK  Horanyi PS  Cafiso DS 《Biochemistry》2011,50(41):8792-8803
In this work, electron paramagnetic resonance (EPR) spectroscopy and X-ray crystallography were used to examine the origins of EPR line shapes from spin-labels at the protein-lipid interface on the β-barrel membrane protein BtuB. Two atomic-resolution structures were obtained for the methanethiosulfonate spin-label derivatized to cysteines on the membrane-facing surface of BtuB. At one of these sites, position 156, the label side chain resides in a pocket formed by neighboring residues; however, it extends from the protein surface and yields a single-component EPR spectrum in the crystal that results primarily from fast rotation about the fourth and fifth bonds linking the spin-label to the protein backbone. In lipid bilayers, site 156 yields a multicomponent spectrum resulting from different rotameric states of the labeled side chain. Moreover, changes in the lipid environment, such as variations in bilayer thickness, modulate the EPR spectrum by modulating label rotamer populations. At a second site, position 371, the labeled side chain interacts with a pocket on the protein surface, leading to a highly immobilized single-component EPR spectrum that is not sensitive to hydrocarbon thickness. This spectrum is similar to that seen at other sites that are deep in the hydrocarbon, such as position 170. This work indicates that the rotameric states of spin-labels on exposed hydrocarbon sites are sensitive to the environment at the protein-hydrocarbon interface, and that this environment may modulate weak interactions between the labeled side chain and the protein surface. In the case of BtuB, lipid acyl chain packing is not symmetric around the β-barrel, and EPR spectra from labeled hydrocarbon-facing sites in BtuB may reflect this asymmetry. In addition to facilitating the interpretation of EPR spectra of membrane proteins, these results have important implications for the use of long-range distance restraints in protein structure refinement that are obtained from spin-labels.  相似文献   

2.
Nitroxide spin labels were incorporated into selected sites within the β-barrel of the bacterial outer-membrane transport protein BtuB by site-directed mutagenesis, followed by chemical modification with a methanethiosufonate spin label. The electron paramagnetic resonance lineshapes of the spin-labeled side chain (R1) from these sites are highly variable, and have spectral parameters that reflect secondary structure and local steric constraints. In addition, these lineshape parameters correlate with crystallographic structure factors for Cα carbons, suggesting that the motion of the spin label is modulated by both the local modes of motion of the spin label and the local dynamics of the protein backbone. Experiments performed as a function of lipid composition and sample temperature indicate that nitroxide spin labels on the exterior surface of BtuB, which face the membrane hydrocarbon, are not strongly influenced by the phase state of the bulk lipids. However, these spectra are modulated by membrane hydrocarbon thickness. Specifically, the values of the scaled mobility parameter for the R1 lineshapes are inversely proportional to the hydrocarbon thickness. These data suggest that protein dynamics and structure in BtuB are directly coupled to membrane hydrophobic thickness.  相似文献   

3.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

4.
Aromatic amino acids of membrane proteins are enriched at the lipid-water interface. The role of tryptophan on the folding and stability of an integral membrane protein is investigated with ultraviolet resonance Raman and fluorescence spectroscopy. We investigate a model system, the β-barrel outer membrane protein A (OmpA), and focus on interfacial tryptophan residues oriented toward the lipid bilayer (trp-7, trp-170, or trp-15) or the interior of the β-barrel pore (trp-102). OmpA mutants with a single tryptophan residue at a nonnative position 170 (Trp-170) or a native position 7 (Trp-7) exhibit the greatest stability, with Gibbs free energies of unfolding in the absence of denaturant of 9.4 and 6.7 kcal/mol, respectively. These mutants are more stable than the tryptophan-free OmpA mutant, which exhibits a free energy of unfolding of 2.6 kcal/mol. Ultraviolet resonance Raman spectra of Trp-170 and Trp-7 reveal evolution of a hydrogen bond in a nonpolar environment during the folding reaction, evidenced by systematic shifts in hydrophobicity and hydrogen bond markers. These observations suggest that the hydrogen bond acceptor is the lipid acyl carbonyl group, and this interaction contributes significantly to membrane protein stabilization. Other spectral changes are observed for a tryptophan residue at position 15, and these modifications are attributed to development of a tryptophan-lipid cation-π interaction that is more stabilizing than an intraprotein hydrogen bond by ∼2 kcal/mol. As expected, there is no evidence for lipid-protein interactions for the tryptophan residue oriented toward the interior of the β-barrel pore. These results highlight the significance of lipid-protein interactions, and indicate that the bilayer provides more than a hydrophobic environment for membrane protein folding. Instead, a paradigm of lipid-assisted membrane protein folding and stabilization must be adopted.  相似文献   

5.
Short modified oligonucleotides that bind in a sequence-specific way to messenger RNA essential for bacterial growth could be useful to fight bacterial infections. One such promising oligonucleotide is peptide nucleic acid (PNA), a synthetic DNA analog with a peptide-like backbone. However, the limitation precluding the use of oligonucleotides, including PNA, is that bacteria do not import them from the environment. We have shown that vitamin B12, which most bacteria need to take up for growth, delivers PNAs to Escherichia coli cells when covalently linked with PNAs. Vitamin B12 enters E. coli via a TonB-dependent transport system and is recognized by the outer-membrane vitamin B12-specific BtuB receptor. We engineered the E. coli ΔbtuB mutant and found that transport of the vitamin B12-PNA conjugate requires BtuB. Thus, the conjugate follows the same route through the outer membrane as taken by free vitamin B12. From enhanced sampling all-atom molecular dynamics simulations, we determined the mechanism of conjugate permeation through BtuB. BtuB is a β-barrel occluded by its luminal domain. The potential of mean force shows that conjugate passage is unidirectional and its movement into the BtuB β-barrel is energetically favorable upon luminal domain unfolding. Inside BtuB, PNA extends making its permeation mechanically feasible. BtuB extracellular loops are actively involved in transport through an induced-fit mechanism. We prove that the vitamin B12 transport system can be hijacked to enable PNA delivery to E. coli cells.  相似文献   

6.
Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or β-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model β-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature.  相似文献   

7.
Xu Q  Ellena JF  Kim M  Cafiso DS 《Biochemistry》2006,45(36):10847-10854
BtuB is a TonB-dependent transport protein that binds and carries vitamin B(12) across the outer membrane of Gram negative bacteria such as Escherichia coli. Previous work has demonstrated that the Ton box, a highly conserved segment near the N-terminus of the protein, undergoes an order-to-disorder transition upon the binding of substrate. Here, we incorporate pairs of nitroxide spin labels into membrane reconstituted BtuB and utilize a four-pulse double electron-electron resonance (DEER) experiment to measure distances between the Ton box and the periplasmic surface of the transporter with and without substrate. During reconstitution, the labeled membrane protein was diluted with wild-type protein, which significantly reduced the intermolecular electron spin-spin relaxation rate and increased the DEER signal-to-noise ratio. In the absence of substrate, each spin pair gives rise to a single distribution of distances that is consistent with the crystal structure obtained for BtuB; however, distances that are much longer are found in the presence of substrate, and the data are consistent with the existence of an equilibrium between folded and unfolded states of the Ton box. From these distances, a model for the position of the Ton box was constructed, and it indicates that the N-terminal end of the Ton box extends approximately 20 to 30 A into the periplasm upon the addition of substrate. We propose that this substrate-induced extension provides the signal that initiates interactions between BtuB and the inner membrane protein TonB.  相似文献   

8.
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.  相似文献   

9.
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid–protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

10.
In Gram-negative bacteria, TonB-dependent outer-membrane transporters bind large, scarce organometallic substrates with high affinity preceding active transport. The cobalamin transporter BtuB requires the additional binding of two Ca2+ ions before substrate binding can occur, but the underlying molecular mechanism is unknown. Using the crystallographic structures available for different bound states of BtuB, we have carried out extended molecular dynamics simulations of multiple functional states of BtuB to address the role of Ca2+ in substrate recruitment. We find that Ca2+ binding both stabilizes and repositions key extracellular loops of BtuB, optimizing interactions with the substrate. Interestingly, replacement by Mg2+ abolishes this effect, in accordance with experiments. Using a set of new force-field parameters developed for cyanocobalamin, we also simulated the substrate-bound form of BtuB, where we observed interactions not seen in the crystal structure between the substrate and loops previously found to be important for binding and transport. Based on our results, we suggest that the large size of cobalamin compared to other TonB-dependent transporter substrates explains the requirement of Ca2+ binding for high-affinity substrate recruitment in BtuB.  相似文献   

11.
PmOmpA is a two-domain outer membrane protein from Pasteurella multocida. The N-terminal domain of PmOmpA is a homologue of the transmembrane β-barrel domain of OmpA from Escherichia coli, whilst the C-terminal domain of PmOmpA is a homologue of the extra-membrane Neisseria meningitidis RmpM C-terminal domain. This enables a model of a complete two domain PmOmpA to be constructed and its conformational dynamics explored via MD simulations of the protein embedded within two different phospholipid bilayers (DMPC and DMPE). The conformational stability of the transmembrane β-barrel is similar to that of a homology model of OprF from Pseudomonas aeruginosa in bilayer simulations. There is a degree of water penetration into the interior of the β-barrel, suggestive of a possible transmembrane pore. Although the PmOmpA model is stable over 20 ns simulations, retaining its secondary structure and fold integrity throughout, substantial flexibility is observed in a short linker region between the N- and the C-terminal domains. At low ionic strength, the C-terminal domain moves to interact electrostatically with the lipid bilayer headgroups. This study demonstrates that computational approaches may be applied to more complex, multi-domain outer membrane proteins, rather than just to transmembrane β-barrels, opening the possibility of in silico proteomics approaches to such proteins.  相似文献   

12.
The structure and hydration of a stratum corneum (SC) lipid model membrane composed of N-(-hydroxyoctadecanoyl)-phytosphingosine (CER6)/cholesterol (Ch)/palmitic acid (PA)/cholesterol sulfate (ChS) were characterized by neutron diffraction. The neutron scattering length density across the SC lipid model membrane was calculated from measured diffraction peak intensities. The internal membrane structure and water distribution function across the bilayer were determined. The low hydration of the intermembrane space is a major feature of the SC lipid model membrane. The thickness of the water layer in the SC lipid model membrane is about 1 Å at full hydration. For the composition 55% CER6/25% Ch/15% PA/5% ChS, in a partly dehydrated state (60% humidity) and at 32°C, the lamellar repeat distance and the membrane thickness have the same value of 45.6 Å . The hydrophobic region of the membrane has a thickness of 31.2 Å . A decrease of the Ch content increases the membrane thickness. The water diffusion through the SC lipid model multilamellar membrane is a considerably slow process relative to that through phospholipid membranes. In excess water, the membrane hydration follows an exponential law with two characteristic times of 93 and 44 min. At 81°C and 97% humidity, the membrane separates into two phases with repeat distances of 45.8 and 40.5 Å . Possible conformations of CER6 molecules in the dry and hydrated multilayers are discussed.  相似文献   

13.
Gauging the interactions of a natively unfolded Parkinson disease-related protein, alpha-synuclein (α-syn) with membranes and its pathways between and within cells is important for understanding its pathogenesis. Here, to address these questions, we use a robust β-barrel channel, α-hemolysin, reconstituted into planar lipid bilayers. Transient, ∼95% blockage of the channel current by α-syn was observed when 1), α-syn was added from the membrane side where the shorter (stem) part of the channel is exposed; and 2), the applied potential was lower on the side of α-syn addition. While the on-rate of α-syn binding to the channel strongly increased with the applied field, the off-rate displayed a turnover behavior. Statistical analysis suggests that at voltages >50 mV, a significant fraction of the α-syn molecules bound to the channel undergoes subsequent translocation. The observed on-rate varied by >100 times depending on the bilayer lipid composition. Removal of the last 25 amino acids from the highly negatively charged C-terminal of α-syn resulted in a significant decrease in the binding rates. Taken together, these results demonstrate that β-barrel channels may serve as sensitive probes of α-syn interactions with membranes as well as model systems for studies of channel-assisted protein transport.  相似文献   

14.
15.
Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer‐Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane‐spanning alpha‐helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature‐dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.  相似文献   

16.
The iron-repressible outer membrane protein FyuA of Yersinia enterocolitica operates as a receptor with dual function: (i) as a receptor for the Y. pestis bacterlocin pesticin, and (ii) as a receptor for yersiniabactin, a siderophore that is produced by mouse-viruient Y. enterocolitica strains of biogroup IB. Cloning of the FyuA-encoding gene was achieved by mobilization of a genomic cosmid library of the pesticin-sensitive and mouse-virulent Y. enterocolitica O:8 strain WA into the pesticin-reslstant WA fyuA mutant and subsequent in vivo selection of transconjugants for the ability to survive and multiply in mice (phenotype mouse viruience). The reisolated transconjugants which survived in mice for 3d harboured a unique cosmid and phenotypicaity were pesticin sensitive. From this cosmid a 2650 bp SalI-PstI fragment conferring pesticin sensitivity was subcioned. Sequencing of this DNA fragment revealed a single open reading frame of 2022 bp, which encodes a deduced polypeptide of 673 amino acids with a predicted molecular mass of 73 677 Da. Cleavage of a putative signal sequence composed of 22 amino acids should lead to a mature protein of 651 amino acids with a molecular mass of 71 368 Da. The open reading frame is preceded by a sequence which shares homoiogy with the postulated consensus Fur iron-repressor protein-binding site. FyuA shows homology to other iron-regulated TonB-dependent outer membrane proteins with receptor functions (e.g. BtuB, CirA, FepA, lutA, FhuA, FoxA, FcuA). On the basis of multiple alignment of amino acid sequences of FyuA and other TonB-dependent receptors, a phylogenetic tree was constructed, demonstrating that FyuA probably belongs to the citrate subfamily or represents a new subfamily of TonB-dependent receptors. Moreover, by complementation of the WA fyuA mutant by the cioned fyuA gene.  相似文献   

17.
FpvA is the primary outer membrane transporter required for iron acquisition via the siderophore pyoverdine (Pvd) in Pseudomonas aeruginosa. FpvA, like other ferrisiderophore transporters, consists of a membrane-spanning β-barrel occluded by a plug domain. The β-strands of the barrel are connected by large extracellular loops and periplasmic turns. Like some other TonB-dependent transporters, FpvA has a periplasmic domain involved in a signalling cascade that regulates expression of genes required for ferrisiderophore transport. Here, the structures of FpvA in different loading states are analysed in light of mutagenesis data. This analysis highlights the roles of different protein domains in Pvd-Fe uptake and the signalling cascade and reveals a strong correlation between Pvd-Fe transport and activation of the signalling cascade. It is likely that conclusions drawn for FpvA will be relevant to other TonB-dependent ferrisiderophore transport and signalling proteins.  相似文献   

18.
Using isobaric–isothermal replica exchange molecular dynamics and all-atom explicit water model we study the impact of Aβ monomer binding on the equilibrium properties of DMPC bilayer. We found that partial insertion of Aβ peptide into the bilayer reduces the density of lipids in the binding “footprint” and indents the bilayer thus creating a lipid density depression. Our simulations also reveal thinning of the bilayer and a decrease in the area per lipid in the proximity of Aβ. Although structural analysis of lipid hydrophobic core detects disordering in the orientations of lipid tails, it also shows surprisingly minor structural perturbations in the tail conformations. Finally, partial insertion of Aβ monomer does not enhance water permeation through the DMPC bilayer and even causes considerable dehydration of the lipid–water interface. Therefore, we conclude that Aβ monomer bound to the DMPC bilayer fails to perturb the bilayer structure in both leaflets. Limited scope of structural perturbations in the DMPC bilayer caused by Aβ monomer may constitute the molecular basis of its low cytotoxicity.  相似文献   

19.
Increasing experimental evidence has shown that membrane protein functionality depends on molecular composition of cell membranes. However, the origin of this dependence is not fully understood. It is reasonable to assume that specific lipid-protein interactions are important, yet more generic effects due to mechanical properties of lipid bilayers likely play a significant role too. Previously it has been demonstrated using models for elastic properties of membranes and lateral pressure profiles of lipid bilayers that the mechanical properties of a lipid bilayer can contribute as much as ∼10 kBT to the free energy difference associated with a change in protein conformational state. Here, we extend those previous approaches to a more realistic model for a large mechanosensitive channel (MscL). We use molecular dynamics together with the MARTINI model to simulate the open and closed states of MscL embedded in a DOPC bilayer. We introduce a procedure to calculate the mechanical energy change in the channel gating using a three-dimensional pressure distribution inside a membrane, computed from the molecular dynamics simulations. We decompose the mechanical energy to terms associated with area dilation and shape contribution. Our results highlight that the lateral pressure profile of a lipid bilayer together with the shape change in gating can induce a contribution of ∼30 kBT on the gating energy of MscL. This contribution arises largely from the interfacial tension between hydrophobic and hydrophilic regions in a lipid bilayer.  相似文献   

20.
Vitamin B12 (CN-Cbl) and iron-siderophore complexes are transported into Escherichia coli in two energy-dependent steps. The first step is mediated by substrate-specific outer membrane transport proteins and the energy-coupling TonB protein complex, and the second step uses separate periplasmic permeases for transport across the cytoplasmic membrane. Genetic and biochemical evidence suggests that the TonB-dependent outer membrane transporters contact TonB directly, and thus they might compete for limiting amounts of functional TonB. The transport of iron-siderophore complexes, such as ferrichrome, causes a partial decrease in the rate of CN-Cbl transport. Although CN-Cbl uptake does not inhibit ferrichrome uptake in wild-type cells, in which the amount of the outer membrane ferrichrome transporter FhuA far exceeds that of the cobalamin transporter BtuB, CN-Cbl does inhibit ferrichrome uptake when BtuB is overexpressed from a multicopy plasmid. This inhibition by CN-Cbl is increased when the expression of FhuA and TonB is repressed by growth with excess iron and is eliminated when BtuB synthesis is repressed by CN-Cbl. The mutual inhibition of CN-Cbl and ferrichrome uptake is overcome by increased expression of TonB. Additional evidence for interaction of the Cbl and iron transport systems is provided by the strong stimulation of the BtuB- and TonB-dependent transport of CN-Cbl into a nonexchangeable, presumably cytoplasmic pool by preincubation of cells with the iron(II) chelator 2,2'-dipyridyl. Other metal ion chelators inhibited CN-Cbl uptake across the outer membrane. Although the effects of chelators are multiple and complex, they indicate competition or interaction among TonB-dependent transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号