首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels.  相似文献   

2.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels.  相似文献   

3.
Mechanosensitive channel large (MscL) encodes the large conductance mechanosensitive channel of the Escherichia coli inner membrane that protects bacteria from lysis upon osmotic shock. To elucidate the molecular mechanism of MscL gating, we have comprehensively substituted Gly(22) with all other common amino acids. Gly(22) was highlighted in random mutagenesis screens of E. coli MscL (, Proc. Nat. Acad. Sci. USA. 95:11471-11475). By analogy to the recently published MscL structure from Mycobacterium tuberculosis (, Science. 282:2220-2226), Gly(22) is buried within the constriction that closes the pore. Substituting Gly(22) with hydrophilic residues decreased the threshold pressure at which channels opened and uncovered an intermediate subconducting state. In contrast, hydrophobic substitutions increased the threshold pressure. Although hydrophobic substitutions had no effect on growth, similar to the effect of an MscL deletion, channel hyperactivity caused by hydrophilic substitutions correlated with decreased proliferation. These results suggest a model for gating in which Gly(22) moves from a hydrophobic, and through a hydrophilic, environment upon transition from the closed to open conformation.  相似文献   

4.
By using a functional approach of reconstituting detergent-solubilized membrane proteins into liposomes and following their function in patch-clamp experiments, we identified a novel mechanosensitive (MS) channel in the thermophilic cell wall-less archaeon Thermoplasma volcanium. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the enriched protein fractions revealed a band of approx 15 kDa comparable to MscL, the bacterial MS channel of large conductance. 20 N-terminal residues determined by protein microsequencing, matched the sequence to an unknown open reading frame in the genome of a related species Thermoplasma acidophilum. The protein encoded by the T. acidophilum gene was cloned and expressed in Escherichia coli and reconstituted into liposomes. When examined for function, the reconstituted protein exhibited properties typical of an MS ion channel: 1) activation by negative pressure applied to the patch-clamp pipet, 2) blockage by gadolinium, and 3) activation by the anionic amphipath trinitrophenol. In analogy to the nomenclature used for bacterial MS channels, the MS channel of T. acidophilum was termed MscTA. Secondary structural analysis indicated that similar to MscL, the T. acidophilum MS protein may have two transmembrane domains, suggesting that MS channels of thermophilic Archaea belong to a family of structurally related MscL-like ion channels with two membrane-spanning regions. When the mscTA gene was expressed in the mscL knockout strain and the MscTA protein reconstituted into liposomes, the gating of MscTA was charaterized by very brief openings of variable conductance. In contrast, when the mscTA gene was expressed in the wild-type mscL + strain of E. coli, the gating properties of the channel resembled MscL. However, the channel had reduced conductance and differed from MscL in its kinetics and in the free energy of activation, suggesting that MscTA and MscL can form functional complexes and/or modulate each other activity. Similar to MscL, MscTA exhibited an increase in activity in liposomes made of phospholipids having shorter acyl chain, suggesting a role of hydrophobic mismatch in the function of prokaryotic MS channels.  相似文献   

5.
The tension-driven gating transition in the large mechanosensitive channel MscL proceeds through detectable states of intermediate conductance. Gain-of-function (GOF) mutants with polar or charged substitutions in the main hydrophobic gate display altered patterns of subconducting states, providing valuable information about gating intermediates. Here we present thermodynamic analysis of several GOF mutants to clarify the nature and position of low-conducting conformations in the transition pathway. Unlike wild-type (WT) MscL, which predominantly occupies the closed and fully open states with very brief substates, the mild V23T GOF mutant frequently visits a multitude of short-lived subconducting states. Severe mutants V23D and G22N open in sequence: closed (C) --> low-conducting substate (S) --> open (O), with the first subtransition occurring at lower tensions. Analyses of equilibrium state occupancies as functions of membrane tension show that the C-->S subtransition in WT MscL is associated with only a minor conductance increment, but the largest in-plane expansion and free energy change. The GOF substitutions strongly affect the first subtransition by reducing area ((Delta)A) and energy ((Delta)E) changes between C and S states commensurably with the severity of mutation. GOF mutants also exhibited a considerably larger (Delta)E associated with the second (S-->O) subtransition, but a (Delta)A similar to WT. The area changes indicate that closed conformations of GOF mutants are physically preexpanded. The tension dependencies of rate constants for channel closure (k(off)) predict different positions of rate-limiting barriers on the energy-area profiles for WT and GOF MscL. The data support the two-gate mechanism in which the first subtransition (C-->S) can be viewed as opening of the central (M1) gate, resulting in an expanded water-filled "leaky" conformation. Strong facilitation of this step by polar GOF substitutions suggests that separation of M1 helices associated with hydration of the pore in WT MscL is the major energetic barrier for opening. Mutants with a stabilized S1 gate demonstrate impeded transitions from low-conducting substates to the fully open state, whereas extensions of S1-M1 linkers result in a much higher probability of reverse O-->S transitions. These data strongly suggest that the bulk of conductance gain in the second subtransition (S-->O) occurs through the opening of the NH2-terminal (S1) gate and the linkers are coupling elements between the M1 and S1 gates.  相似文献   

6.
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.  相似文献   

7.
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.  相似文献   

8.
Parabens are alkyl esters of p-hydroxybenzoic acid used as preservatives in a wide range of food, pharmaceutical, and cosmetic products (Soni et al. Food Chem. Toxicol. 39:513–532, 2001). Despite their common use for over 50 years, their mechanism of action is still unclear. In this study we examined the effects of ethyl and propyl paraben, on gating of the E. coli mechanosensitive channel of large conductance (MscL) reconstituted into azolectin liposomes. We found that propyl and ethyl paraben spontaneously activate MscL. Moreover, the addition of propyl paraben caused an increase in MscL activity and the lowering of p1/2, the pressure at which the MscL was opened 50% of the time, the Go, the free energy required to open the MscL, and the parameter , which describes the channel sensitivity to pressure. In addition, in silico studies showed that propyl paraben binds to the channel gate of the MscL. The mechanosensitive channel of small conductance was also found to be spontaneously activated by parabens. In summary, our study indicates that one of the previously unidentified mechanisms of action of parabens as antimicrobial agents is via an interaction with the mechanosensitive channels to upset the osmotic gradients in bacteria.This revised version was published online in March 2005 with corrections to Figure 6.  相似文献   

9.
The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.  相似文献   

10.
MscL, a mechanosensitive channel found in many bacteria, protects cells from hypotonic shock by reducing intracellular pressure through release of cytoplasmic osmolytes. First isolated from Escherichia coli, this protein has served as a model for how a protein senses and responds to membrane tension. Recently the structure of a functionally uncharacterized MscL homologue from Mycobacterium tuberculosis was solved by x-ray diffraction to a resolution of 3.5 A. Here we demonstrate that the protein forms a functional MscL-like mechanosensitive channel in E. coli membranes and azolectin proteoliposomes. Furthermore, we show that M. tuberculosis MscL crystals, when re-solubilized and reconstituted, yield wild-type channel currents in patch clamp, demonstrating that the protein does not irreversibly change conformation upon crystallization. Finally, we apply functional clues acquired from the E. coli MscL to the M. tuberculosis channel and show a mechanistic correlation between these channels. However, the inability of the M. tuberculosis channel to gate at physiological membrane tensions, demonstrated by in vivo E. coli expression and in vitro reconstitution, suggests that the membrane environment or other additional factors influence the gating of this channel.  相似文献   

11.
The mechanosensitive channel of large conductance (MscL) plays an important role in the survival of bacterial cells to hypo-osmotic shock. This channel has been extensively studied and its sequence, structure and electrophysiological characteristics are well known. Here we present a method to visualise MscL in living bacteria using confocal microscopy. By creating a gene fusion between mscl and the gene encoding the green fluorescent protein (GFP) we were able to express the fusion protein MscL-GFP in bacteria. We show that MscL-GFP is present in the cytoplasmic membrane and forms functional channels. These channels have the same characteristics as wild-type MscL, except that they require more pressure to open. This method could prove an interesting, non-invasive, tool to study the localisation and the regulation of expression of MscL in bacteria.  相似文献   

12.
Although high hydrostatic pressure (HHP) is an interesting parameter to be applied in bioprocessing, its potential is currently limited by the lack of bacterial chassis capable of surviving and maintaining homeostasis under pressure. While several efforts have been made to genetically engineer microorganisms able to grow at sublethal pressures, there is little information for designing backgrounds that survive more extreme pressures. In this investigation, we analyzed the genome of an extreme HHP-resistant mutant of E. coli MG1655 (designated as DVL1), from which we identified four mutations (in the cra, cyaA, aceA and rpoD loci) causally linked to increased HHP resistance. Analysing the functional effect of these mutations we found that the coupled effect of downregulation of cAMP/CRP, Cra and the glyoxylate shunt activity, together with the upregulation of RpoH and RpoS activity, could mechanistically explain the increased HHP resistance of the mutant. Using combinations of three mutations, we could synthetically engineer E. coli strains able to comfortably survive pressures of 600–800 MPa, which could serve as genetic backgrounds for HHP-based biotechnological applications.  相似文献   

13.
MscL, a 15 kDa transmembrane protein, is the only component involved in the formation of a 3 nS channel in the inner membrane of Escherichia coli that opens in response to mechanical or osmotic stress. While previous data had suggested that the functional MscL complex might be a hexamer, a recent crystallographic study of the MscL homologue from M. tuberculosis reveals a pentameric structure. The present work further examines the stoichiometry of the E. coli MscL using a variety of biochemical approaches. Detergent-purified 6His-MscL in solution and MscL in the membrane could be chemically crosslinked with the products displaying ladderlike patterns on SDS gels. Three crosslinking agents (EDC, DMS, and DMA) used at saturating concentrations invariably generated pentamers as the largest product. DSS produced additional bands corresponding to larger complexes although the pentamer band appeared to be the predominant product at high levels of crosslinker. It is not clear whether these extra bands reflect a difference in the crosslinking chemistry of DSS or whether its spacer arm is the longest of those used, or a combination of both facts. For the detergent-solubilized 6His-MscL both sedimentation equilibrium and gel chromatography showed the presence of multiple species. Thus the longer spacer arm could permit both intra- and intercomplex linkages. Nonetheless, the patterns obtained with all agents are consistent with and strongly suggest a pentameric organization for the MscL channel. Expression of MscL as genetically engineered double or triple subunit tandems yields low numbers of functional channels as compared to expressed monomers. The double-tandem assemblies must have an even number of subunits and crosslinking in the membrane confirmed hexamerization. Gel chromatography clearly demonstrated that the channels formed from the double tandems were larger than those formed from WT MscL, consistent with the native channel being pentameric. The observation that both double and triple tandems form channels of normal conductance implies that the pentameric assembly is to some degree independent of the number of subunit repeats in the polypeptide precursor. The channel is thus a pentameric core with the `extra' subunits left out of the functional complex. From sedimentation equilibrium and size-exclusion chromatography, we also conclude that MscL complexes are not in a dynamic equilibrium with monomers, but are pre-assembled; and thus, their gating properties must result from changes in the conformation of the entire complex induced by the mechanical stress. Received: 26 February 1999/Revised: 10 June 1999  相似文献   

14.
Powl AM  East JM  Lee AG 《Biochemistry》2008,47(14):4317-4328
The mechanosensitive channel of large conductance MscL from Escherichia coli has been reconstituted into sealed vesicles, and the effects of lipid structure on the flux of the fluorescent molecule calcein through the open channel have been studied. The channel was opened by reaction of the G22C mutant of MscL with the reagent [2-(triethylammonium)ethyl]methanethiosulfonate (MTSET) which introduces five positive charges within the pore constriction. Flux through the channel was small when the lipid was phosphatidylcholine, but addition of the anionic lipids phosphatidylglycerol, phosphatidic acid, or cardiolipin up to 50 mol % resulted in increases in the amplitudes and rates of release of calcein. Similar effects were seen when either wild-type MscL or the G22C mutant was opened by osmotic pressure difference; rates of release of calcein were very slow in the absence of anionic lipid but increased with increasing concentrations of phosphatidylglycerol to 50 mol %. The observed partial release of trapped calcein following activation of MscL was attributed to the formation of a long-lived subconductance state of MscL following channel opening. Effects of anionic lipid were attributed to an increase in the rate of the transition from closed to fully open state and to a decrease in the rate of the transition from the fully open state to the subconductance state. Higher concentrations of anionic lipid led to a decrease in the rate and amplitude of release of calcein, possibly due to a decreased rate of flux through the open channel. In mixtures with anionic lipids, phosphatidylethanolamine resulted in lower rates and amplitude of release than phosphatidylcholine.  相似文献   

15.
Mechanosensitive channels sense elevated membrane tension that arises from rapid water influx occurring when cells move from high to low osmolarity environments (hypoosmotic shock). These non-specific channels in the cytoplasmic membrane release osmotically-active solutes and ions. The two major mechanosensitive channels in Escherichia coli are MscL and MscS. Deletion of both proteins severely compromises survival of hypoosmotic shock. However, like many bacteria, E. coli cells possess other MscS-type genes (kefA, ybdG, ybiO, yjeP and ynaI). Two homologs, MscK (kefA) and YbdG, have been characterized as mechanosensitive channels that play minor roles in maintaining cell integrity. Additional channel openings are occasionally observed in patches derived from mutants lacking MscS, MscK and MscL. Due to their rare occurrence, little is known about these extra pressure-induced currents or their genetic origins. Here we complete the identification of the remaining E. coli mechanosensitive channels YnaI, YbiO and YjeP. The latter is the major component of the previously described MscM activity (~300 pS), while YnaI (~100 pS) and YbiO (~1000 pS) were previously unknown. Expression of native YbiO is NaCl-specific and RpoS-dependent. A Δ7 strain was created with all seven E. coli mechanosensitive channel genes deleted. High level expression of YnaI, YbiO or YjeP proteins from a multicopy plasmid in the Δ7 strain (MJFGH) leads to substantial protection against hypoosmotic shock. Purified homologs exhibit high molecular masses that are consistent with heptameric assemblies. This work reveals novel mechanosensitive channels and discusses the regulation of their expression in the context of possible additional functions.  相似文献   

16.
The effect of a kefA mutation on the mechanosensitive channels in the cytoplasmic membrane of Escherichia coli was established by introducing a mutation of the kefA gene into wild-type E. coli by P1 transduction. The mutation of the kefA gene not only made the cells sensitive to K+ in the medium but also changed the mechanosensitive channel activity. The kefA mutation did not change the conductances of the two mechanosensitive channels in the cytoplasmic membrane of E. coli, but it prolonged the channel open time. Also, the kefA mutation made the cells more sensitive to pressure in comparison to wild-type cells. The high sensitivity to pressure of the kefA mutant was not modulated by betaine or by the potassium gradient across the membrane. The effect of the kefA mutation on mechanosensitive channels was not due to a membrane fluidity change. KefA might be a regulator for mechanosensitive channels. Received: 6 September 1995/Revised: 13 December 1995  相似文献   

17.
In mechanosensitive (MS) channels, gating is initiated by changes in intra-bilayer pressure profiles originating from bilayer deformation. Here we evaluated two physical mechanisms as triggers of MS channel gating: the energetic cost of protein-bilayer hydrophobic mismatches and the geometric consequences of bilayer intrinsic curvature. Structural changes in the Escherichia coli large MS channel (MscL) were studied under nominally zero transbilayer pressures using both patch clamp and EPR spectroscopic approaches. Changes in membrane intrinsic curvature induced by the external addition of lysophosphatidylcholine (LPC) generated massive spectroscopic changes in the narrow constriction that forms the channel 'gate', trapping the channel in the fully open state. Hydrophobic mismatch alone was unable to open the channel, but decreasing bilayer thickness lowered MscL activation energy, stabilizing a structurally distinct closed channel intermediate. We propose that the mechanism of mechanotransduction in MS channels is defined by both local and global asymmetries in the transbilayer pressure profile at the lipid-protein interface.  相似文献   

18.
The bacterial mechanosensitive channel of large conductance, MscL, is one of the best characterized mechanosensitive channels serving as a paradigm for how proteins can sense and transduce mechanical forces. The physiological role of MscL is that of an emergency release valve that opens a large pore upon a sudden drop in the osmolarity of the environment. A crystal structure of a closed state of MscL shows it as a homopentamer, with each subunit consisting of two transmembrane domains (TM). There is consensus that the TM helices move in an iris like manner tilting in the plane of the membrane while gating. An N-terminal amphipathic helix that lies along the cytoplasmic membrane (S1), and the portion of TM2 near the cytoplasmic interface (TM2ci), are relatively close in the crystal structure, yet predicted to be dynamic upon gating. Here we determine how these two regions interact in the channel complex, and study how these interactions change as the channel opens. We have screened 143 double-cysteine mutants of E. coli MscL for their efficiency in disulfide bridging and generated a map of protein-protein interactions between these two regions. Interesting candidates have been further studied by patch clamp and show differences in channel activity under different redox potentials; the results suggest a model for the dynamics of these two domains during MscL gating.  相似文献   

19.
In the search for the essential functional domains of the large mechanosensitive ion channel (MscL) of E. coli, we have cloned several mutants of the mscL gene into a glutathione S-transferase fusion protein expression system. The resulting mutated MscL proteins had either amino acid additions, substitutions or deletions in the amphipathic N-terminal region, and/or deletions in the amphipathic central or hydrophilic C-terminal regions. Proteolytic digestion of the isolated fusion proteins by thrombin yielded virtually pure recombinant MscL proteins that were reconstituted into artificial liposomes and examined for function by the patch-clamp technique. The addition of amino acid residues to the N-terminus of the MscL did not affect channel activity, whereas N-terminal deletions or changes to the N-terminal amino acid sequence were poorly tolerated and resulted in channels exhibiting altered pressure sensitivity and gating. Deletion of 27 amino acids from the C-terminus resulted in MscL protein that formed channels similar to the wild-type, while deletion of 33 C-terminal amino acids extinguished channel activity. Similarly, deletion of the internal amphipathic region of the MscL abolished activity. In accordance with a recently proposed spatial model of the MscL, our results suggest that (i) the N-terminal portion participates in the channel activation by pressure, and (ii) the essential channel functions are associated with both, the putative central amphipathic α-helical portion of the protein and the six C-terminal residues RKKEEP forming a charge cluster following the putative M2 membrane spanning α-helix. Received: 25 September 1996/Revised: 21 November 1996  相似文献   

20.
Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号