首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The SERCA2a isoform of the sarco/endoplasmic reticulum Ca(2+) pumps is specifically expressed in the heart, whereas SERCA2b is the ubiquitously expressed variant. It has been shown previously that replacement of SERCA2a by SERCA2b in mice (SERCA2(b/b) mice) results in only a moderate functional impairment, whereas SERCA activity is decreased by a 40% lower SERCA protein expression and by increased inhibition by phospholamban. To find out whether the documented kinetic differences in SERCA2b relative to SERCA2a (i.e., a twofold higher apparent Ca(2+) affinity, but twofold lower maximal turnover rate) can explain these compensatory changes, we simulated Ca(2+) dynamics in mouse ventricular myocytes. The model shows that the relative Ca(2+) transport capacity of SERCA2a and SERCA2b depends on the SERCA concentration. The simulations point to a dominant effect of SERCA2b's higher Ca(2+) affinity over its lower maximal turnover rate. The results suggest that increased systolic and decreased diastolic Ca(2+) levels in unstimulated conditions could contribute to the downregulation of SERCA in SERCA2(b/b) mice. In stress conditions, Ca(2+) handling is less efficient by SERCA2b than by SERCA2a, which might contribute to the observed hypertrophy in SERCA2(b/b) mice. Altogether, SERCA2a might be a better compromise between performance in basal conditions and performance during β-adrenergic stress.  相似文献   

2.
Cytosolic Ca2+ dynamics are important in the regulation of insulin secretion from the pancreatic β-cells within islets of Langerhans. These dynamics are sculpted by the endoplasmic reticulum (ER), which takes up Ca2+ when cytosolic levels are high and releases it when cytosolic levels are low. Calcium uptake into the ER is through sarcoendoplasmic reticulum Ca2+-ATPases, or SERCA pumps. Two SERCA isoforms are expressed in the β-cell: the high Ca2+ affinity SERCA2b pump and the low affinity SERCA3 pump. Recent experiments with islets from SERCA3 knockout mice have shown that the cytosolic Ca2+ oscillations from the knockout islets are characteristically different from those of wild type islets. While the wild type islets often exhibit compound Ca2+ oscillations, composed of fast oscillations superimposed on much slower oscillations, the knockout islets rarely exhibit compound oscillations, but produce slow (single component) oscillations instead. Using mathematical modeling, we provide an explanation for this difference. We also investigate the effect that SERCA2b inhibition has on the model β-cell. Unlike SERCA3 inhibition, we demonstrate that SERCA2b inhibition has no long-term effect on cytosolic Ca2+ oscillations unless a store-operated current is activated.  相似文献   

3.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

4.
The molecular mechanism underlying the characteristic high apparent Ca2+ affinity of SERCA2b relative to SERCA1a and SERCA2a isoforms was studied. The C-terminal tail of SERCA2b consists of an 11th transmembrane helix (TM11) with an associated 11-amino acid luminal extension (LE). The effects of each of these parts and their interactions with the SERCA environment were examined by transient kinetic analysis of the partial reaction steps in the Ca2+ transport cycle in mutant and chimeric Ca2+-ATPase constructs. Manipulations to the LE of SERCA2b markedly increased the rate of Ca2+ dissociation from Ca2E1. Addition of the SERCA2b tail to SERCA1a slowed Ca2+ dissociation, but only when the luminal L7/8 loop of SERCA1 was simultaneously replaced with that of SERCA2, thus suggesting that the LE interacts with L7/8 in Ca2E1. The interaction of LE with L7/8 is also important for the low rate of the Ca2E1P → E2P conformational transition. These findings can be rationalized in terms of stabilization of the Ca2E1 and Ca2E1P forms by docking of the LE near L7/8. By contrast, low rates of E2P dephosphorylation and E2 → E1 transition in SERCA2b depend critically on TM11, particularly in a SERCA2 environment, but do not at all depend on the LE or L7/8. This indicates that interaction of TM11 with SERCA2-specific sequence element(s) elsewhere in the structure is critical in the Ca2+-free E2/E2P states. Collectively these properties ensure a higher Ca2+ affinity of SERCA2b relative to other SERCA isoforms, not only on the cytosolic side, but also on the luminal side.  相似文献   

5.
The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca2+ ATPase (SERCA2b) and secretory-pathway Ca2+ ATPase (SPCA1a) belong both to the P2A-type ATPase subgroup of Ca2+ transporters and play a crucial role in the Ca2+ homeostasis of respectively the ER and Golgi apparatus. They are ubiquitously expressed, but their low abundance precludes purification for crystallization. We have developed a new strategy for purification of recombinant hSERCA2b and hSPCA1a that is based on overexpression in yeast followed by a two-step affinity chromatography method biasing towards properly folded protein. In a first step, these proteins were purified with the aid of an analogue of the SERCA inhibitor thapsigargin (Tg) coupled to a matrix. Wild-type (WT) hSERCA2b bound efficiently to the gel, but its elution was hampered by the high affinity of SERCA2b for Tg. Therefore, a mutant was generated carrying minor modifications in the Tg-binding site showing a lower affinity for Tg. In a second step, reactive dye chromatography was performed to further purify and concentrate the properly folded pumps and to exchange the detergent to one more suitable for crystallization. A similar strategy was successfully applied to purify WT SPCA1a. This study shows that it is possible to purify functionally active intracellular Ca2+ ATPases using successive thapsigargin and reactive dye affinity chromatography for future structural studies. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

6.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

7.
Ca2+ (sarco-endoplasmic reticulum Ca2+ ATPase (SERCA)) and Cu+ (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca2+, demonstrated by the addition of ATP and Ca2+ to SERCA deprived of Ca2+ (E2) as compared with ATP to Ca2+-activated enzyme (E1·2Ca2+). Activation by Ca2+ is slower at low pH (2H+·E2 to E1·2Ca2+) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca2+ translocation. A “H+-gated pathway,” demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca2+ release by H+/Ca2+ exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu+/H+ exchange. As opposed to SERCA after Ca2+ chelation, ATP7A/B does not undergo reverse phosphorylation with Pi after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.  相似文献   

8.
The Ca2+ content in the sarcoplasmic reticulum (SR) determines the amount of Ca2+ released, thereby regulating the magnitude of Ca2+ transient and contraction in cardiac muscle. The Ca2+ content in the SR is known to be regulated by two factors: the activity of the Ca2+ pump (SERCA) and Ca2+ leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca2+ leak has not been fully investigated in the heart. In the present study, we evaluated the role of the SERCA activity in Ca2+ leak from the SR using a novel saponin-skinned method combined with transgenic mouse models in which the SERCA activity was genetically modulated. In the SERCA overexpression mice, the Ca2+ uptake in the SR was significantly increased and the Ca2+ transient was markedly increased. However, Ca2+ leak from the SR did not change significantly. In mice with overexpression of a negative regulator of SERCA, sarcolipin, the Ca2+ uptake by the SR was significantly decreased and the Ca2+ transient was markedly decreased. Again, Ca2+ leak from the SR did not change significantly. In conclusion, the selective modulation of the SERCA activity modulates Ca2+ uptake, although it does not change Ca2+ leak from the SR.  相似文献   

9.
Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (K Ca, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.  相似文献   

10.
Exposure of sarcoplasmic reticulum membranes to 4-hydroxy-2-nonenal (HNE) resulted in inhibition of the maximal ATPase activity and Ca2+ transport ability of SERCA1a, the Ca2+ pump in these membranes. The concomitant presence of ATP significantly protected SERCA1a ATPase activity from inhibition. ATP binding and phosphoenzyme formation from ATP were reduced after treatment with HNE, whereas Ca2+ binding to the high affinity sites was altered to a lower extent. HNE reacted with SH groups, some of which were identified by MALDI-TOF mass spectrometry, and competition studies with FITC indicated that HNE also reacted with Lys515 within the nucleotide binding pocket of SERCA1a. A remarkable fact was that both the steady-state ability of SR vesicles to sequester Ca2+ as well as the ATPase activity of SR membranes in the absence of added ionophore or detergent were sensitive to concentrations of HNE much smaller than those which affected the maximal ATPase activity of SERCA1a. This was due to increase in the passive permeability to Ca2+ of HNE-treated SR vesicles, an increase in permeability which did not arise from alteration of the lipid component of these vesicles. Judging from immunodetection with an anti-HNE antibody, this HNE-dependent increase in permeability probably arose from modification of proteins of about 150–170 kDa, present in very low abundance in longitudinal SR membranes (and in slightly larger abundance in SR terminal cisternae). HNE-induced promotion, via these proteins, of Ca2+ leakage pathways, might be involved in the general toxic effects of HNE.  相似文献   

11.
Endo/sarcoplasmic reticulum (ER) Ca2+-pumps are important for cell survival and communication but they are inactivatedby reactive oxygen species (ROS).We have previously reported that the Ca2+-pump isoform SERCA3a is more resistant than SERCA2b to damage by peroxide. Since peroxide and superoxide differ in their redox potentials, we now report the effects of superoxide on the two Ca2+-pump isoforms. We isolated microsomes from HEK293 cells transiently transfected with SERCA2b or SERCA3a cDNA. We exposed these microsomes to superoxide which was generated using xanthine plus xanthine oxidase and catalase to prevent accumulation of peroxide due to superoxide dismutation. Superoxide damaged the Ca2+- transport activity of both isoforms but SERCA3a was damaged at higher concentrations of superoxide and upon longer periods of exposures than was SERCA2b. Thus the SERCA3a isoform is more resistant than SERCA2b to inactivation by both superoxide and peroxide. (Mol Cell Biochem 000: 000-000, 1999)  相似文献   

12.
《Biophysical journal》2023,122(2):386-396
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.  相似文献   

13.
Three cross-linkable phospholamban (PLB) mutants of increasing inhibitory strength (N30C-PLB < N27A,N30C,L37A-PLB (PLB3) < N27A,N30C,L37A,V49G-PLB (PLB4)) were used to determine whether PLB decreases the Ca2+ affinity of SERCA2a by competing for Ca2+ binding. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca2+-ATPase activity and E1∼P formation were correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca2+ concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca2+ for binding to SERCA2a. This was confirmed with the Ca2+ pump mutant, D351A, which is catalytically inactive but retains strong Ca2+ binding. Increasingly higher Ca2+ concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB antagonizes Ca2+ binding. Finally, the specific conformation of E2 (Ca2+-free state of SERCA2a) that binds PLB was investigated using the Ca2+-pump inhibitors thapsigargin and vanadate. Cross-linking assays conducted in the absence of Ca2+ showed that PLB bound preferentially to E2 with bound nucleotide, forming a remarkably stable complex that is highly resistant to both thapsigargin and vanadate. In the presence of ATP, N30C-PLB had an affinity for SERCA2a approaching that of vanadate (micromolar), whereas PLB3 and PLB4 had much higher affinities, severalfold greater than even thapsigargin (nanomolar or higher). We conclude that PLB decreases Ca2+ binding to SERCA2a by stabilizing a unique E2·ATP state that is unable to bind thapsigargin or vanadate.  相似文献   

14.
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P2A group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca2+ compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca2+. The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca2+-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca2+, but also of Mn2+, is also addressed.All cells invest a considerable part of their total energy budget in active transport to keep up transmembrane (TM) ion gradients (Rolfe and Brown 1997). Prokaryotes already evolved P-type ion-transport ATPases/ion pumps to that aim (Axelsen and Palmgren 1998). The name P-type refers to the transient transfer of the γ-phosphate group of ATP to a highly conserved aspartate group in the enzyme forming a phospho-intermediate. This autophosphorylation is an important step in the pump’s catalytic cycle (Kuhlbrandt 2004). Based on amino-acid sequence comparisons and on the exon/intron layout of the corresponding genes, three types of P-type Ca2+ pumps can be discerned in Eumetazoa: the SERCA-, the SPCA-, and the PMCA-type. Whereas ancestral representatives of each type are recognized in some Eubacteria and Archaea, it is also remarkable that some Eukaryotes have apparently lost either SERCA or SPCA pumps. Yeast for instance lacks SERCA pumps whereas plants thrive well without SPCAs (Mills et al. 2008). The SERCA pumps, which are found in the endoplasmic reticulum (ER) or in the sarcoplasmic reticulum (SR) of eukaryotic cells and the evolutionary older secretory pathway ATPases (SPCA) found in the Golgi apparatus, are closely related to each other and together belong to the P2A subfamily. They form the topic of this review. The plasma-membrane Ca2+-pumps (PMCA), on the other hand, appear to be phylogenetically the oldest of the three and form the P2B-subfamily branch. PMCAs are addressed in an article by Brini and Carafoli (2009). Some further information on the evolution of the three types of ATPases was recently reviewed by Palmgren and Axelsen (1998) and Vangheluwe et al. (2009). Of the three families, only SERCA pumps translocate two Ca2+ ions and hydrolyze one ATP for each catalytic turnover. They possess two Ca2+-transport sites: site I and site II; the numbers specify the sequence of filling of the respective sites. The single Ca2+-binding site of the SPCA and PMCA pumps structurally corresponds to site II of SERCA (Toyoshima 2009).  相似文献   

15.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

16.
The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) is key to Ca2+ homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca2+ uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca2+ studies showed decreased nitric oxide (·NO)-induced 45Ca2+ uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca2+ stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca2+ influx. Adenoviral overexpression of calreticulin, an ER Ca2+ binding protein, increased ionomycin-releasable stores, VEGF-induced Ca2+ influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca2+ homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca2+ stores.  相似文献   

17.
A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.  相似文献   

18.
Heart tissue contains large amounts of the protein encoded by the Ca2+ pump gene SERCA2. The SERCA2 RNA can be spliced alternatively to produce mRNA encoding the proteins SERCA2a and SERCA2b which differ in their C-terminal sequences. In this study we report the tissue distribution of SERCA2a and SERCA2b isoforms byin situ hybridization to rabbit heart and stomach. The expression of SERCA2 mRNA was high in myocardial cells, being the highest in the atrial region. In contrast, there was more SERCA2 protein in Western blots in ventricles than in atria. Myocardial cells expressed predominantly the mRNA for the isoform SERCA2a. Whereas the stomach smooth muscle and the neuronal plexus expressed SERCA2 at levels much lower than myocardial cells, the expression was very high in the stomach mucosa. Mucosa contained mainly the mRNA for SERCA2b. From immunocytochemistry it was concluded that the anti-heart SR Ca2+ pump antibody IID8 reacted much better with heart and surface mucosal cells in the stomach than with the stomach smooth muscle, and that IID8 reactivity was intracellular. In contrast PM4A2B, an antibody against the plasma membrane Ca2+ pump, reacted well with heart and stomach smooth muscle, plexus and mucosa, and its localization appeared to be in the plasma membrane. Thus, stomach smooth muscle expressed SERCA2b mRNA and protein at low levels, mucosa expressed SERCA2b mRNA and protein at high levels, atria and ventricle expressed SERCA2a mRNA and protein at high levels, mRNA being more in atria, but protein being more in ventricles.Deceased August 14, 1992  相似文献   

19.
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.  相似文献   

20.
The spatial organisation of Orai channels and SERCA pumps within ER-PM junctions is important for enhancing the versatility and specificity of sub-cellular Ca2+ signals generated during store operated Ca2+ entry (SOCE). In this paper, we present a novel three dimensional spatio-temporal model describing Ca2+ dynamics in the ER-PM junction and sub-PM ER during SOCE. We investigate the role of Orai channel and SERCA pump location to provide insights into how these components shape the Ca2+ signals generated and affect ER refilling. We find that the organisation of Orai channels within the ER-PM junction controls the amplitude and shape of the Ca2+ profile but does not enhance ER refilling. The model shows that ER refilling is only weakly affected by the location of SERCA2b pumps within the ER-PM junction and that the placement of SERCA2a pumps within the ER-PM junction has much greater control over ER refilling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号