首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid mixing between vesicles functionalized with SNAREs and the cytosolic C2AB domain of synaptotagmin-1 recapitulates the basic Ca2+ dependence of neuronal exocytosis. However, in the conventional ensemble lipid mixing assays it is not possible to discriminate whether Ca2+ accelerates the docking or the fusion of vesicles. Here we report a fluorescence microscopy-based assay to monitor SNARE-mediated docking and fusion of individual vesicle pairs. In situ measurement of the concentration of diffusing particles allowed us to quantify docking rates by a maximum-likelihood approach. This analysis showed that C2AB and Ca2+ accelerate vesicle-vesicle docking with more than two orders of magnitude. Comparison of the measured docking rates with ensemble lipid mixing kinetics, however, suggests that in most cases bilayer fusion remains the rate-limiting step. Our single vesicle results show that only ∼60% of the vesicles dock and only ∼6% of docked vesicles fuse. Lipid mixing on single vesicles was fast (tmix < 1 s) while an ensemble assay revealed two slow mixing processes with tmix ∼ 1 min and tmix ∼ 20 min. The presence of several distinct docking and fusion pathways cannot be rationalized at this stage but may be related to intrasample heterogeneities, presumably in the form of lipid and/or protein composition.  相似文献   

2.
An in vitro fusion assay uses fluorescence microscopy of labeled lipids to monitor single v-SNARE vesicle docking and fusion events on a planar lipid bilayer containing t-SNAREs. For vesicles and bilayer comprising phosphatidylcholine (POPC, 84-85% by mol) and phosphatidylserine (DOPS, 15% by mol), previous work demonstrated prompt, full fusion (τfus = 25 ms). Substitution of 20-60% phosphatidylethanolamine (DOPE) for phosphatidylcholine in the v-SNARE vesicle with either 0 or 20% DOPE included in the t-SNARE bilayer gives rise to hemifusion events. Labeled lipids diffuse into the planar bilayer as two temporally distinct waves, presumably hemifusion of the outer leaflet followed by inner leaflet (core) fusion. The fusion kinetics with DOPE is markedly heterogeneous. Some vesicle/docking site pairs exhibit prompt, full fusion while others exhibit hemifusion. Hemifusion events are roughly half productive (leading to subsequent core fusion within 20 s) and half dead-end. In qualitative accord with expectations from studies of protein-free vesicle-vesicle fusion, the hemifusion rate khemi is 15-20 times faster than the core fusion rate kcore, and the fraction of hemifusion events increases with increasing percentage of DOPE. This suggests similar underlying molecular pathways for protein-free and neuronal SNARE-driven fusion. Removal of phosphatidylserine from the v-SNARE vesicle has no effect on docking or fusion.  相似文献   

3.
The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.  相似文献   

4.
Docking and fusion of single proteoliposomes reconstituted with full-length v-SNAREs (synaptobrevin) into planar lipid bilayers containing binary t-SNAREs (anchored syntaxin associated with SNAP25) was observed in real time by wide-field fluorescence microscopy. This enabled separate measurement of the docking rate k(dock) and the unimolecular fusion rate k(fus). On low t-SNARE-density bilayers at 37 degrees C, docking is efficient: k(dock) = 2.2 x 10(7) M(-1) s(-1), approximately 40% of the estimated diffusion limited rate. Full vesicle fusion is observed as a prompt increase in fluorescence intensity from labeled lipids, immediately followed by outward radial diffusion (D(lipid) = 0.6 microm2 s(-1)); approximately 80% of the docked vesicles fuse promptly as a homogeneous subpopulation with k(fus) = 40 +/- 15 s(-1) (tau(fus) = 25 ms). This is 10(3)-10(4) times faster than previous in vitro fusion assays. Complete lipid mixing occurs in <15 ms. Both the v-SNARE and the t-SNARE are necessary for efficient docking and fast fusion, but Ca2+ is not. Docking and fusion were quantitatively similar on syntaxin-only bilayers lacking SNAP25. At present, in vitro fusion driven by SNARE complexes alone remains approximately 40 times slower than the fastest, submillisecond presynaptic vesicle population response.  相似文献   

5.
SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.  相似文献   

6.
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca2+-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca2+-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.  相似文献   

7.
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., of 10 and ∼20 ms, respectively.  相似文献   

8.
Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.  相似文献   

9.
M E Haque  A J McCoy  J Glenn  J Lee  B R Lentz 《Biochemistry》2001,40(47):14243-14251
The effects of hemagglutinin (HA) fusion peptide (X-31) on poly(ethylene glycol)- (PEG-) mediated vesicle fusion in three different vesicle systems have been compared: dioleoylphosphatidylcholine (DOPC) small unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) and palmitoyloleoylphosphatidylcholine (POPC) large unilamellar perturbed vesicles (pert. LUV). POPC LUVs were asymmetrically perturbed by hydrolyzing 2.5% of the outer leaflet lipid with phospholipase A(2) and removing hydrolysis products with BSA. The mixing of vesicle contents showed that these perturbed vesicles fused in the presence of PEG as did DOPC SUV, but unperturbed LUV did not. Fusion peptide had different effects on the fusion of these different types of vesicles: fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. Fusion was enhanced in DOPC SUV at low peptide surface occupancy but hindered at high surface occupancy. Finally, fusion was hindered in proportion to peptide concentration in perturbed POPC LUV. Contents leakage assays demonstrated that the peptide enhanced leakage in all vesicles. The peptide enhanced lipid transfer between both fusogenic and nonfusogenic vesicles. Peptide binding was detected in terms of enhanced tryptophan fluorescence or through transfer of tryptophan excited-state energy to membrane-bound diphenylhexatriene (DPH). The peptide had a higher affinity for vesicles with packing defects (SUV and perturbed LUV). Quasi-elastic light scattering (QELS) indicated that the peptide caused vesicles to aggregate. We conclude that binding of the fusion peptide to vesicle membranes has a significant effect on membrane properties but does not induce fusion. Indeed, the fusion peptide inhibited fusion of perturbed LUV. It can, however, enhance fusion between highly curved membranes that normally fuse when brought into close contact by PEG.  相似文献   

10.
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm2/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.  相似文献   

11.
Cationic, triple-chain amphiphiles promote vesicle fusion more than structurally related double-chain or single-chain analogues. Two types of vesicle fusion experiments were conducted, mixing of oppositely charged vesicles and acid-triggered self-fusion of vesicles composed of cationic amphiphile and anionic cholesteryl hemisuccinate (CHEMS). Vesicle fusion was monitored by standard fluorescence assays for intermembrane lipid mixing, aqueous contents mixing and leakage. Differential scanning calorimetry was used to show that triple-chain amphiphiles lower the lamellar-inverse hexagonal (Lα-HII) phase transition temperature for dipalmitoleoylphosphatidylethanolamine. The triple-chain amphiphiles may enhance vesicle fusion because they can stabilize the inversely curved membrane surfaces of the fusion intermediates, however, other factors such as extended conformation, packing defects, chain motion, or surface dehydration may also contribute. From the perspective of drug delivery, the results suggest that vesicles containing cationic, triple-chain amphiphiles (and cationic, cone-shaped amphiphiles in general) may be effective as fusogenic delivery capsules.  相似文献   

12.
The present study involves the testing and characterization of synaptic vesicle (SV) docking and fusion as the steps of exocytosis using two different approaches in vitro.The interaction of SVs was determined by the changing of particles size in suspensions by the method of dynamic light scattering (DLS). Fluorescence assay is represented for studying the mechanism of SV membrane fusion. The sizes of membrane particles were shown to increase in the medium containing cytoplasmic proteins of synaptosomes. Therefore, the cytosolic proteins are suggested to promote the SVs into close proximity where they may become stably bound or docked. The specific effect of synaptosomal cytosolic proteins on the interaction of SVs in the cell-free system was demonstrated. The incubation of SVs with liver cytosol proteins or in the bovine serum albumin solution did not lead to the enlargement of the particles size. The fusion reaction of the SVs membranes occurred within the micromolar range of Ca2+ concentrations. Our studies have shown that in vitro process of exocytosis can be divided into Ca2+-independent step, termed docking and followed by fusion step that is triggered by Ca2+. The role of cytosolic proteins of synaptosomes in docking and fusion of SVs in cell-free system was further confirmed.  相似文献   

13.
Homotypic vacuole fusion in yeast requires Sec18p (N-ethylmaleimide–sensitive fusion protein [NSF]), Sec17p (soluble NSF attachment protein [α-SNAP]), and typical vesicle (v) and target membrane (t) SNAP receptors (SNAREs). We now report that vacuolar v- and t-SNAREs are mainly found with Sec17p as v–t-SNARE complexes in vivo and on purified vacuoles rather than only transiently forming such complexes during docking, and disrupting them upon fusion. In the priming reaction, Sec18p and ATP dissociate this v–t-SNARE complex, accompanied by the release of Sec17p. SNARE complex structure governs each functional aspect of priming, as the v-SNARE regulates the rate of Sec17p release and, in turn, Sec17p-dependent SNARE complex disassembly is required for independent function of the two SNAREs. Sec17p physically and functionally interacts largely with the t-SNARE. (a) Antibodies to the t-SNARE, but not the v-SNARE, block Sec17p release. (b) Sec17p is associated with the t-SNARE in the absence of v-SNARE, but is not bound to the v-SNARE without t-SNARE. (c) Vacuoles with t-SNARE but no v-SNARE still require Sec17p/Sec18p priming, whereas their fusion partners with v-SNARE but no t-SNARE do not. Sec18p thus acts, upon ATP hydrolysis, to disassemble the v–t-SNARE complex, prime the t-SNARE, and release the Sec17p to allow SNARE participation in docking and fusion. These studies suggest that the analogous ATP-dependent disassembly of the 20-S complex of NSF, α-SNAP, and v- and t-SNAREs, which has been studied in detergent extracts, corresponds to the priming of SNAREs for docking rather than to the fusion of docked membranes.  相似文献   

14.
The present study involves the testing and characterization of synaptic vesicle (SV) docking and fusion as the steps of exocytosis using two different approaches in vitro.The interaction of SVs was determined by the changing of particles size in suspensions by the method of dynamic light scattering (DLS). Fluorescence assay is represented for studying the mechanism of SV membrane fusion. The sizes of membrane particles were shown to increase in the medium containing cytoplasmic proteins of synaptosomes. Therefore, the cytosolic proteins are suggested to promote the SVs into close proximity where they may become stably bound or docked. The specific effect of synaptosomal cytosolic proteins on the interaction of SVs in the cell-free system was demonstrated. The incubation of SVs with liver cytosol proteins or in the bovine serum albumin solution did not lead to the enlargement of the particles size. The fusion reaction of the SVs membranes occurred within the micromolar range of Ca2+ concentrations. Our studies have shown that in vitro process of exocytosis can be divided into Ca2+-independent step, termed docking and followed by fusion step that is triggered by Ca2+. The role of cytosolic proteins of synaptosomes in docking and fusion of SVs in cell-free system was further confirmed.  相似文献   

15.
The synaptic vesicle protein synaptotagmin I (syt) promotes exocytosis via its ability to penetrate membranes in response to binding Ca(2+) and through direct interactions with SNARE proteins. However, studies using full-length (FL) membrane-embedded syt in reconstituted fusion assays have yielded conflicting results, including a lack of effect, or even inhibition of fusion, by Ca(2+). In this paper, we show that reconstituted FL syt promoted rapid docking of vesicles (<1 min) followed by a priming step (3-9 min) that was required for subsequent Ca(2+)-triggered fusion between v- and t-SNARE liposomes. Moreover, fusion occurred only when phosphatidylinositol 4,5-bisphosphate was included in the target membrane. This system also recapitulates some of the effects of syt mutations that alter synaptic transmission in neurons. Finally, we demonstrate that the cytoplasmic domain of syt exhibited mixed agonist/antagonist activity during regulated membrane fusion in vitro and in cells. Together, these findings reveal further convergence of reconstituted and cell-based systems.  相似文献   

16.
The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pHout) of PCPECL liposomes, with an internal pH (pHin) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK a?~?6.9). Conversely, ΔpH generated by enhanced pHin of PCPECL at a pHout of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pHin at a pHout of 8.0. At bulk acidic pH, ΔΨ generated by Na+ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pHout, the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨM blocks inner mitochondrial membrane fusion during apoptosis.  相似文献   

17.
Protein transport in eukaryotic cells requires the selective docking and fusion of transport intermediates with the appropriate target membrane. t-SNARE molecules that are associated with distinct intracellular compartments may serve as receptors for transport vesicle docking and membrane fusion through interactions with specific v-SNARE molecules on vesicle membranes, providing the inherent specificity of these reactions. VAM3 encodes a 283–amino acid protein that shares homology with the syntaxin family of t-SNARE molecules. Polyclonal antiserum raised against Vam3p recognized a 35-kD protein that was associated with vacuolar membranes by subcellular fractionation. Null mutants of vam3 exhibited defects in the maturation of multiple vacuolar proteins and contained numerous aberrant membrane-enclosed compartments. To study the primary function of Vam3p, a temperature-sensitive allele of vam3 was generated (vam3tsf). Upon shifting the vam3tsf mutant cells to nonpermissive temperature, an immediate block in protein transport through two distinct biosynthetic routes to the vacuole was observed: transport via both the carboxypeptidase Y pathway and the alkaline phosphatase pathway was inhibited. In addition, vam3tsf cells also exhibited defects in autophagy. Both the delivery of aminopeptidase I and the docking/ fusion of autophagosomes with the vacuole were defective at high temperature. Upon temperature shift, vam3tsf cells accumulated novel membrane compartments, including multivesicular bodies, which may represent blocked transport intermediates. Genetic interactions between VAM3 and a SEC1 family member, VPS33, suggest the two proteins may act together to direct the docking and/or fusion of multiple transport intermediates with the vacuole. Thus, Vam3p appears to function as a multispecificity receptor in heterotypic membrane docking and fusion reactions with the vacuole. Surprisingly, we also found that overexpression of the endosomal t-SNARE, Pep12p, suppressed vam3Δ mutant phenotypes and, likewise, overexpression of Vam3p suppressed the pep12Δ mutant phenotypes. This result indicated that SNAREs alone do not define the specificity of vesicle docking reactions.  相似文献   

18.
The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic acid 1:2 mixture in atomic detail. The simulations were performed at 350-370 K and mimicked the temperature- and pH-induced fusion of DPPC/palmitic acid vesicles from experiments by others. To make the calculations computationally feasible, a vesicle simulated at periodic boundary conditions was fused with its periodic image. Starting from a preformed stalk between the outer leaflets of the vesicle and its periodic image, a hemifused state formed within 2 ns. In one out of six simulations, a transient pore formed close to the stalk, resulting in the mixing of DPPC lipids between the outer and the inner leaflet. The hemifused state was (meta)stable on a timescale of up to 11 ns. Forcing a single lipid into the interior of the hemifusion diaphragm induced the formation and expansion of a fusion pore on a nanosecond timescale. This work opens the perspective to study a wide variety of mesoscopic biological processes in atomic detail.  相似文献   

19.
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.  相似文献   

20.
Secretory vesicles dock at their target in preparation for fusion. Using single-vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18-1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking-deficient munc18-1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t-SNARE and Munc18-1 binding partner syntaxin, but not the v-SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18-1/syntaxin-dependent, strongly tethered, fusion-competent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号