首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Cell calcium》2016,59(6):638-648
Localized subcellular changes in Ca2+ serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca2+ signaling have been greatly facilitated by the availability of fluorescent Ca2+ indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca2+ levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca2+ signals is lacking. Here, we evaluated several fluorescent Ca2+ indicators in the context of local Ca2+ signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca2+ dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca2+-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca2+ puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca2+ signals.  相似文献   

3.
Abstract: δ-Opioids mobilize Ca2+ from intracellular stores in undifferentiated NG108-15 cells, but the mechanism involved remains unclear. Therefore, we examined the effect of [d -Pen2,5]enkephalin on inositol 1,4,5-trisphosphate formation in these cells. [d -Pen2,5]enkephalin caused a dose-dependent (EC50 = 3.1 nM) increase in inositol 1,4,5-trisphosphate formation (measured using a specific radioreceptor mass assay), which peaked (25.7 ± 1.2 pmol/mg of protein with 1 µM, n = 9) at 30 s and returned to basal levels (10.6 ± 0.9 pmol/mg of protein, n = 9) within 4–5 min. This response was fully naloxone (1 µM) reversible and pertussis toxin (100 ng/ml for 24 h) sensitive. Preincubation with Ni2+ (2.5 mM) or nifedipine (1 µM) had no effect on the [d -Pen2,5]enkephalin (1 µM)-induced inositol 1,4,5-trisphosphate response, and K+ (80 mM) was unable to stimulate inositol 1,4,5-trisphosphate formation, indicating Ca2+ influx-induced activation of phospholipase C is not involved. Preincubation with the protein kinase C inhibitor Ro 31-8220 (1 µM) enhanced, whereas acute exposure to phorbol 12,13-dibutyrate (1 µM) abolished, the [d -Pen2,5]enkephalin (0.1 µM)-induced inositol 1,4,5-trisphosphate response, suggesting protein kinase C exerts an autoinhibitory feedback action. [d -Pen2,5]Enkephalin also dose-dependently (EC50 = 2.8 nM) increased the intracellular [Ca2+], which was maximal (24 nM increase with 1 µM, n = 5) at 30 s. This close temporal and dose-response relationship strongly suggests that δ-opioid receptor-mediated increases in intracellular [Ca2+] results from inositol 1,4,5-trisphosphate-induced Ca2+ release from intracellular stores, in undifferentiated NG108-15 cells.  相似文献   

4.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

5.
Communication between the SR (sarcoplasmic reticulum, SR) and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). Although it has been demonstrated that CaR (calcium sensing receptor) activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re), the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.  相似文献   

6.
In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.  相似文献   

7.
Prolactin (PRL) release and intracellular free calcium concentration [Ca2+]i were measured in two populations of normal rat lactotrophs (light and heavy fractions) in culture. Spontaneous PRL release of heavy fraction cells was more sensitive to dihydropyridines (DHPs; Bay K 8644 and nifedipine) when compared to the light fraction lactotrophs. The stimulatory effect of thyrotropin-releasing hormone (TRH) on PRL release from heavy fraction cells was inhibited by Cd2+ and mimicked by Bay K 8644. Indo-1 experiments revealed that TRH-increased [Ca2+]i was reversibly inhibited by Cd2+. In a Ca2+-free EGTA-containing medium, TRH did not modify [Ca2+]i.Abbreviations [Ca2+]i intracellular free calcium concentration - DA dopamine - DHP dihydropyridine(s) - DMEM Dulbecco's Modified Eagle's Medium - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PRL prolactin - RIA radioimmunoassay - TRH thyrotropin-releasing hormone - VGCC voltage-gated calcium channel  相似文献   

8.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

9.
In fura-2-loaded human periodontal ligament (HPDL) cells, bradykinin induced a rapidly transient increase and subsequently sustained increase in cytosolic Ca2+ ([Ca2+]i). When external Ca2+ was chelated by EGTA, the transient peak of [Ca2+]i was reduced and the sustained level was abolished, implying the Ca2+ mobilization consists of intracellular Ca2+ release and Ca2+ influx. Thapsigargin, a specific Ca2+-ATPase inhibitor for inositol 1,4,5-trisphosphate (1,4,5-1P3)-sensitive Ca2+ pool, induced an increase in [Ca2+]i in the absence of external Ca2+. After depletion of the intracellular Ca2+ pool by thapsigargin, the increase in [Ca2+]i induced by bradykinin was obviously reduced. Bradykinin also stimulated formation of inositol polyphosphates including 1,4,5-IP3. These results suggest that bradykinin stimulates intracellular Ca2+ release from the 1,4,5-1P3-sensitive Ca2+ pool. Bradykinin stimulated prostaglandin E2 (PGE2) release in the presence of external Ca2+, but not in the absence of external Ca2+. Ca2+ ionophore A23187 and thapsigargin evoked the release of PGE2 in the presence of external Ca2+ despite no activation of bradykinin receptors. These results indicate that bradykinin induces Ca2+ mobilization via activation of phospholipase C and PGE2 release caused by the Ca2+ influx in HPDL cells.  相似文献   

10.
Phenylephrine (PE)-induced oscillatory fluctuations in intracellular Ca2+ concentration ([Ca2+]i) of vascular smooth muscle have been observed in many blood vessels isolated from a wide variety of mammals. Paradoxically, until recently similar observations in humans have proven elusive. In this study, we report for the first time observations of adrenergically-stimulated [Ca2+]i oscillations in human mesenteric artery smooth muscle. In arterial segments preloaded with Fluo-4 AM and mounted on a myograph on the stage of a confocal microscope, we observed PE-induced oscillations in [Ca2+]i, which initiated and maintained vasoconstriction. These oscillations present some variability, possibly due to compromised health of the tissue. This view is corroborated by our ultrastructural analysis of the cells, in which we found only (5 ± 2)% plasma membrane-sarcoplasmic reticulum apposition, markedly less than measured in healthy tissue from laboratory animals. We also partially characterized the oscillations by using the inhibitory drugs 2-aminoethoxydiphenyl borate (2-APB), cyclopiazonic acid (CPA) and nifedipine. After PE contraction, all drugs provoked relaxation of the vessel segments, sometimes only partial, and reduced or inhibited oscillations, except CPA, which rarely caused relaxation. These preliminary results point to a potential involvement of the sarcoplasmic reticulum Ca2+ and inositol 1,4,5-trisphosphate receptor (IP3R) in the maintenance of the Ca2+ oscillations observed in human blood vessels.  相似文献   

11.
《Cell calcium》1996,20(3):303-314
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca2+-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of −60 mV, the muscarine-induced [Ca2+]i, rise, especially its sustained phase, decreased in magnitude. intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca2+ channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

12.
 Pollen tube reorientation is a dynamic cellular event crucial for successful fertilization. Previously, it was shown that reorientation is preceded by an asymmetric increase of cytosolic free calcium ([Ca2+]c) in the side of the apex to which the cell will bend. In order to find the targets for this signal transduction pathway, the effects of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in the reorientation process were analyzed. Ins(1,4,5)P3 was artificially increased in different cell domains by localized photoactivation of caged Ins(1,4,5)P3 and its effects on [Ca2+]c monitored by ion confocal microscopy. It was found that photolysis of caged Ins(1,4,5)P3 in the nuclear or subapical region resulted in a transient increase in [Ca2+]c and reorientation of the growth axis, while photolysis in the apex frequently resulted in disturbed growth or tip bursting. Perfusion of the cells with the Ins(1,4,5)P3 receptor blocker heparin prior to photoactivation inhibited the increase in [Ca2+]c and no reorientation was observed. Ca2+ release from Ins(1,4,5)P3-dependent stores localized in the shank of the tube thus seems to be part of the signal transduction pathway that controls tube guidance, although not the primary stimulus leading to reorientation. Received: 5 May 1998 / Accepted: 11 June 1998  相似文献   

13.
We have investigated the effect of 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, on carbachol-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in human neuroblastoma SH-SY5Y cells by means of single cell imaging of [Ca2+]i. SIN-1 potentiated carbachol-induced [Ca2+]i rise regardless of external Ca2+, and the potentiation was completely inhibited by superoxide dismutase, indicating that peroxynitrite may enhance Ca2+ release from intracellular stores. On the other hand, SIN-1 reduced carbachol-induced inositol 1,4,5-trisphosphate (IP3) formation. Genistein, a tyrosine kinase inhibitor, potentiated carbachol-induced rise of [Ca2+]i regardless of external Ca2+. These results suggest that peroxynitrite may potentiate the release of Ca2+ from intracellular stores through the perturbation of regulation in tyrosine phosphorylation-dephosphorylation system.  相似文献   

14.
In dividing embryos, a localized elevation in intracellular Ca2+ ([Ca2+]i) at the cleavage furrow has been shown to be essential for cytokinesis. However, the underlying mechanisms for generating and maintaining these [Ca2+]i gradients throughout cytokinesis are not fully understood. In the present study, we analyzed the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) and endoplasmic reticulum (ER) distribution in determining the intracellular Ca2+ gradients in early zebrafish blastomeres. Application of the injected Ca2+ indicator, Indo-1, showed that during the first cell division a standing Ca2+ gradient was formed ∼35 min after fertilization, with the [Ca2+]i spatially decaying from 500–600 nmol/L at the cleavage furrow to 100–200 nmol/L around the nucleus. While the IP3R immunohistochemical fluorescence was relatively concentrated in the peri-furrow region, ER labeling was relatively enriched in both peri-furrow and peri-nuclear regions. Numeric simulation suggested that a divergence in the spatial distribution of IP3R and the locations of Ca2+ uptake within the ER was essential for the formation of a standing Ca2+ gradient, and the Ca2+ gradient could only be well-established under an optimal stoichiometry of Ca2+ uptake and release. Indeed, while inhibition of IP3R Ca2+ release blocked the generation of the Ca2+ gradient at a lower [Ca2+]i level, both Ca2+ release stimulation by inositol 1,4,5-trisphosphate (IP3) injection and ER Ca2+ pump inhibition by cyclopiazonic acid also eliminated the Ca2+ gradients at higher [Ca2+]i levels. Our results suggest a dynamic relationship between ER-mediated Ca2+ release and uptake that underlies the maintenance of the perifurrow Ca2+ gradient and is essential for cytokinesis of zebrafish embryos.  相似文献   

15.
A theoretical model of calcium signaling is presented that simulates oscillations of cytoplasmic calcium concentration ([Ca2+]cyt) in stomatal guard cells under the action of abscisic acid. The model is based on the kinetics of inositol 1,4,5-trisphosphate-sensitive calcium channels of endoplasmic reticulum and cyclic ADP-ribose-sensitive calcium channels of the tonoplast. The operation of two energy-dependent pumps—the Ca2+-ATPase of the endoplasmic reticulum and the Ca2+/H+ antiporter of the tonoplast—is also included in the model. It is shown that the removal of excessive Ca2+ from the cytoplasm by the tonoplast Ca2+/H+ antiporter is the main factor accounting for generation of [Ca2+]cyt oscillations at a wide range of ABA concentrations (0.01–1 M). The long period of [Ca2+]cyt oscillations in plant cells is explained by a slow release from inhibition of inositol 1,4,5-trisphosphate-gated calcium channels.  相似文献   

16.
The functional role of inositol 1,4,5-trisphosphate (InsP3) signaling in cardiomyocytes is not entirely understood but it was linked to an increased propensity for triggered activity. The aim of this study was to determine how InsP3 receptors can translate Ca2+ release into a depolarization of the plasma membrane and consequently arrhythmic activity. We used embryonic stem cell-derived cardiomyocytes (ESdCs) as a model system since their spontaneous electrical activity depends on InsP3-mediated Ca2+ release. [InsP3]i was monitored with the FRET-based InsP3-biosensor FIRE-1 (Fluorescent InsP3 Responsive Element) and heterogeneity in sub-cellular [InsP3]i was achieved by targeted expression of FIRE-1 in the nucleus (FIRE-1nuc) or expression of InsP3 5-phosphatase (m43) localized to the plasma membrane. Spontaneous activity of ESdCs was monitored simultaneously as cytosolic Ca2+ transients (Fluo-4/AM) and action potentials (current clamp). During diastole, the diastolic depolarization was paralleled by an increase of [Ca2+]i and spontaneous activity was modulated by [InsP3]i. A 3.7% and 1.7% increase of FIRE-1 FRET ratio and 3.0 and 1.5 fold increase in beating frequency was recorded upon stimulation with endothelin-1 (ET-1, 100 nmol/L) or phenylephrine (PE, 10 µmol/L), respectively. Buffering of InsP3 by FIRE-1nuc had no effect on the basal frequency while attenuation of InsP3 signaling throughout the cell (FIRE-1), or at the plasma membrane (m43) resulted in a 53.7% and 54.0% decrease in beating frequency. In m43 expressing cells the response to ET-1 was completely suppressed. Ca2+ released from InsP3Rs is more effective than Ca2+ released from RyRs to enhance INCX. The results support the hypothesis that in ESdCs InsP3Rs form a functional signaling domain with NCX that translates Ca2+ release efficiently into a depolarization of the membrane potential.  相似文献   

17.
Abstract: The relationship between elevations in intracellular free Ca2+ concentration ([Ca2+]i) by different mechanisms and tyrosine hydroxylase (TH) gene expression was examined. Depolarization by an elevated K+ concentration triggered rapid and sustained increases in [Ca2+]i from a basal level of ~50 to 110–150 nM and three- to fourfold elevations in TH mRNA levels, requiring extracellular calcium but not inositol 1,4,5-trisphosphate (IP3). On the other hand, bradykinin or thapsigargin, both of which induce release of intracellular calcium stores via IP3 or inhibition of Ca2+-ATPase, rapidly elevated [Ca2+]i to >200 nM and increased TH gene expression (three-to fivefold). Confocal imaging showed that the elevations in [Ca2+]i in each case occurred throughout the cyto- and nucleoplasm. The initial rise in [Ca2+]i due to either bradykinin or thapsigargin, which did not require extracellular calcium, was sufficient to initiate the events leading to increased TH expression. Consistent with this, the effects of bradykinin on TH expression were inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester which chelates or inhibits the release of intracellular calcium, respectively. Bradykinin required a rise in [Ca2+]i for <10 min, as opposed to 10–30 min for depolarization to increase TH mRNA levels. These results demonstrate that although each of these treatments increased TH gene expression by raising [Ca2+]i, there are important differences among them in terms of the magnitude of elevated [Ca2+]i, requirements for extracellular calcium or release of intracellular calcium stores, and duration of elevated [Ca2+]i, indicating the involvement of different calcium signaling pathways leading to regulation of TH gene expression.  相似文献   

18.
Intracellular calcium ([Ca2+]i) plays a pivotal role in neuronal ischemia. The aim of the present study was to investigate the routes of Ca2+ entry during non-excitotoxic oxygen and glucose deprivation (OGD) in acutely dissociated rat CA1 neurons. During OGD the fluo-3/fura red ratio reflecting [Ca2+]i increased rapidly and irreversibly. [Ca2+]i increased to the same degree in Ca2+ depleted medium, and also when both the ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate (IP3) receptors were blocked. When the endoplasmic reticulum (ER) Ca2+ stores were emptied with thapsigargin no increase in [Ca2+]i was observed independent of extracellular Ca2+. The OGD induced Ca2+ deregulation in isolated CA1 neurons is not prevented by removing Ca2+, or by blocking the IP3– or RyR receptors. However, when SERCA was blocked, no increase in [Ca2+]i was observed suggesting that SERCA dysfunction represents an important mechanism for ischemic Ca2+ overload.  相似文献   

19.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

20.
The role of 1-aminocyclopropane-1-carboxylic acid (ACC) in pollen germination was investigated in several plant species. It was found that ACC stimulated in vitro pollen germination in all five species of plants tested. EGTA and phenothiazine inhibited the increase in the germination rate induced by ACC. Free Ca2+ levels in the cytosol ([Ca2+]cyt) in ungerminated and germinated pollen were 136 and 287 nm, respectively. Adding 0.25 mm ACC to the germination medium increased the [Ca2+]cyt in germinated pollen up to 450 nm. When pollen was treated with both 0.25 mm ACC and 3.6 μm inositol 1,4,5-trisphosphate, the [Ca2+]cyt increased to 850 nm, and pollen germination was also stimulated. In the presence of Li+, an inhibitor of inositol monophosphatase, the [Ca2+]cyt was reduced to 155 nm, and the ACC-stimulated pollen germination was inhibited. The data provided evidence for the involvement of Ca2+ as a messenger in the stimulative effect of ACC on pollen germination. Received December 1, 1995; accepted February 18, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号