首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study ligand-protein binding in solution, a dialysis method was used in which the free concentration of ligand can be controlled. The method has certain advantages and was applied to the binding of thyroxine by thyroxine-binding prealbumin, a system about which the results found in the literature are not in good agreement. From the isotherm drawn according to the Scatchard plot, it was found that thyroxine-binding prealbumin only presents a single binding site for thyroxine per molecule, the association constant being 1.7 . 10(8) M-1.  相似文献   

2.
We have shown previously that association of reversible active site ligands induces a conformational change in an omega loop (Omega loop), Cys(69)-Cys(96), of acetylcholinesterase. The fluorophore acrylodan, site-specifically incorporated at positions 76, 81, and 84, on the external portion of the loop not lining the active site gorge, shows changes in its fluorescence spectrum that reflect the fluorescent side chain moving from a hydrophobic environment to become more solvent-exposed. This appears to result from a movement of the Omega loop accompanying ligand binding. We show here that the loop is indeed flexible and responds to conformational changes induced by both active center and peripheral site inhibitors (gallamine and fasciculin). Moreover, phosphorylation and carbamoylation of the active center serine shows distinctive changes in acrylodan fluorescence spectra at the Omega loop sites, depending on the chirality and steric dimensions of the covalently conjugated ligand. Capping of the gorge with fasciculin, although it does not displace the bound ligand, dominates in inducing a conformational change in the loop. Hence, the ligand-induced conformational changes are distinctive and suggest multiple loop conformations accompany conjugation at the active center serine. The fluorescence changes induced by the modified enzyme may prove useful in the detection of organophosphates or exposure to cholinesterase inhibitors.  相似文献   

3.
Odorant-binding proteins (OBPs) are lipocalins secreted in the nasal mucus of vertebrates, which convey odorants to their neuronal receptors. We compared the binding properties of a recombinant rat OBP (OBP-1F) using a set of six odorants of various chemical structures. We examined the binding properties by both fluorescent probe competition and isothermal titration calorimetry. OBP-1F affinity constants, in the micromolar range, varied by more than one order of magnitude and were roughly correlated to the odorant size. The observed binding stoichiometry was found to be around one odorant per dimer. Using tyrosine differential spectroscopy, the binding of ligand was shown to induce local conformational changes. A three-dimensional structure of OBP-1F, modelled using the known structure of aphrodisin as template, allowed us to suggest the location of the observed structural changes outside of the binding pocket. These results are consistent with one binding site located in one of the two beta-barrels of the OBP-1F dimer and a subtle conformational change correlated with binding of an odorant molecule, which hampers uptake of a second odorant by the other hydrophobic pocket.  相似文献   

4.
Interaction between Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and its substrates have been studied by fluorescence quenching. In the absence of other substrates, glutamine, tRNA(Gln) and ATP bind with dissociation constants of 460, 0.22 and 180 microM, respectively. The presence of other substrates has either no effect or, at best a weak effect, on binding of ligands. Attempts to isolate enzyme-bound aminoacyl adenylate did not succeed. Binding of the phosphodiester, 5'-(methyl)adenosine monophosphate (MeAMP), to GlnRS was studied by fluorescence quenching and radioactive-ligand binding. tRNA also only has a weak effect on phosphodiester binding. Selectively pyrene-labeled GlnRS was used to obtain shape and size information for free GlnRS. A comparison with the GlnRS shape in the GlnRS/tRNA(Gln) crystal structure indicates that no major change in shape and size occurs upon tRNA(Gln) binding to GlnRS. 5,5'-Bis(8-anilino-1-naphthalene sulfonate) (bis-ANS), a non-covalent fluorescent probe, was also used to probe for conformational changes in GlnRS. This probe also indicated that no major conformational change occurs upon tRNA(Gln) binding. We conclude that lack of tRNA-independent pyrophosphate-exchange activity in this enzyme is not a result of either lack of glutamine or ATP binding in the absence of tRNA, or formation of aminoacyl adenylate and slow release of pyrophosphate. A conformational change is implied upon tRNA binding, which promotes pyrophosphate exchange. Fluorescence studies indicate that this conformational change must be limited and local in nature.  相似文献   

5.
The extracellular domain of the metabotropic glutamate receptor 1alpha (mGluR1alpha) forms a dimer and the ligand, glutamate, induces a structural rearrangement in this domain. However, the conformational change in the cytoplasmic domain, which is critical for mGluR1alpha's interaction with G proteins, remains unclear. Here we investigated the ligand-induced conformational changes in the cytoplasmic domain by fluorescence resonance energy transfer (FRET) analysis of mGluR1alpha labeled with fluorescent protein(s) under total internal reflection field microscopy. Upon ligand binding, the intersubunit FRET efficiency between the second loops increased, whereas that between first loops decreased. In contrast, the intrasubunit FRET did not change clearly. These results show that ligand binding does not change the structure of each subunit, but does change the dimeric allocation of the cytoplasmic regions, which may underlie downstream signaling.  相似文献   

6.
The kinetics of cytochalasin D binding to monomeric actin   总被引:5,自引:0,他引:5  
It has been shown previously, using G-actin labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-diamine, that Mg2+ induces a conformational change in monomeric G-actin as a consequence of binding to a tight divalent cation binding site (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886). Using the same fluorescent probe, we show that, subsequent to the Mg2+-induced conformational change, cytochalasin D induces a fluorescence decrease. The data are consistent with a mechanism which proposes that, after Mg2+ binding, cytochalasin D binds and induces a second conformational change which results in overall tight binding of the cytochalasin. The initial binding of cytochalasin D to monomeric actin labeled with the fluorescent probe was found to be 200 microM, and the forward and reverse rate constants for the subsequent conformational change were 350 s-1 and 8 s-1, respectively, with an overall dissociation constant to the Mg2+-induced form of 4.6 microM. The conformational change does not occur in monomeric actin in the presence of Ca2+ rather than Mg2+, but Ca2+ competes with Mg2+ for the tight binding site on the G-actin molecule. Direct binding studies show that actin which has not been labeled with the fluorophore binds cytochalasin D more tightly. The conformational change induced by Mg2+ and cytochalasin D precedes the formation of an actin dimer.  相似文献   

7.
The galactose/glucose-binding protein (GBP) is synthesized in the cytoplasm of Escherichia coli in a precursor form and exported into the periplasmic space upon cleavage of a 23-amino-acid leader sequence. GBP binds galactose and glucose in a highly specific manner. The ligand induces a hinge motion in GBP and the resultant protein conformational change constitutes the basis of the sensing system. The mglB gene, which codes for GBP, was isolated from the chromosome of E. coli using the polymerase chain reaction (PCR). Since wild-type GBP lacks cysteines in its structure, introducing this amino acid by site-directed mutagenesis ensures single-label attachment at specific sites with a sulfhydro-specific fluorescent probe. Site-directed mutagenesis by overlap extension PCR was performed to prepare three different mutants to introduce a single cysteine residue at positions 148, 152, and 182. Since these residues are not involved in ligand binding and since they are located at the edge of the binding cleft, they experience a significant change in environment upon binding of galactose or glucose. The sensing system strategy is based on the fluorescence changes of the probe as the protein undergoes a structural change on binding. In this work a reagentless sensing system has been rationally designed that can detect submicromolar concentrations of glucose. The calibration plots have a linear working range of three orders of magnitude. Although the system can sense galactose as well, this epimer is not a potential interfering substance since its concentration in blood is negligible.  相似文献   

8.
Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the submicromolar range was developed.  相似文献   

9.
It is shown that conformational changes of receptor proteins brought about by binding of a ligand induce changes in the lipid environment of the receptor that can be monitored by fluorescent lipid probes. On this basis a new approach to studies of ligand-receptor binding is proposed. Using the interaction of the ricin B-chain with Burkitt lymphoma cells as an example and fluorescent labelled sphingomyelin as a probe, the ligand-induced changes of fluorescence anisotropy were shown to be concentration-dependent and to permit determination of the binding constant and the number of receptor-binding sites. The method was found to be specific and highly sensitive, allowing detection of the action of one RB molecule per cell. Scatchard analysis of the binding of 125I-RB demonstrated the presence on the cell surface of two binding sites with Kd approximately 10(-10) and approximately 10(-8) M, respectively. Only the high-affinity sites were detected by the fluorescence technique. Saturation of these sites resulted in maximum inhibition of protein synthesis.  相似文献   

10.
Cytochrome c' from Allochromatium vinosum is an attractive model protein to study ligand-induced conformational changes. This homodimeric protein dissociates into monomers upon binding of NO, CO or CN(-) to the iron of its covalently attached heme group. While ligand binding to the heme has been well characterized using a variety of spectroscopic techniques, direct monitoring of the subsequent monomerization has not been reported previously. Here we have explored two biophysical techniques to simultaneously monitor ligand binding and monomerization. Native mass spectrometry allowed the detection of the dimeric and monomeric forms of cytochrome c' and even showed the presence of a CO-bound monomer. The kinetics of the ligand-induced monomerization were found to be significantly enhanced in the gas phase compared with the kinetics in solution, however. Ligand binding to the heme and the dissociation of the dimer in solution were also studied using energy transfer from a fluorescent probe to both heme groups of the protein. Comparison of ligand binding kinetics as observed with UV-vis spectroscopy with changes in fluorescence suggested that binding of one CO molecule per dimer could be sufficient for monomerization.  相似文献   

11.
It has been proposed that regulatory multienzyme complex formation between yeast ornithine transcarbamoylase (OTCase) and arginase is triggered by a conformational change promoted by the binding of ornithine to a regulatory site in OTCase (Wiame, J.-M. (1971) Curr. Top. Cell. Regul. 4, 1-38). To isolate the binding of ornithine to the proposed regulatory site, the active site was blocked with the high affinity (Ki = 13 +/- 1.4 nM) bisubstrate analogue, delta-N-phosphonacetyl-L-ornithine (PALO). The binding of PALO to the active site produces large changes in the absorption (delta A290-296 = 0.010/mg of enzyme) and in the fluorescence (25% quenching) of the protein. These changes both saturate at one PALO/polypeptide chain. The binding of PALO also changes the rate constant for diffusional acrylamide quenching by 43% and increases the midpoint for the thermal denaturation of the enzyme by 13 degrees C. Finally, PALO binding results in a +2.8% change in the sedimentation coefficient demonstrating that these spectral and energetic changes are associated with a gross structural change in the enzyme. In an effort to detect ligand binding to the proposed effector site on OTCase, ornithine was added to the enzyme saturated with PALO, and consequent conformational changes were tested for using methodologies identical to those which demonstrated active site ligand binding-promoted conformational changes. In no instance were any additional differences observed. Hence, strong support for isosteric effector binding-promoted conformational changes cannot be presented. We conclude that active site ligand binding events themselves are responsible for conformational changes which promote enzyme-enzyme association of OTCase with arginase.  相似文献   

12.
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational‐selection and induced‐change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational‐selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced‐change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on‐ and off‐rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single‐molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational‐selection and induced‐change processes in both binding and unbinding direction.  相似文献   

13.
Enzyme function requires conformational changes to achieve substrate binding, domain rearrangements, and interactions with partner proteins, but these movements are difficult to observe. Small-angle X-ray scattering (SAXS) is a versatile structural technique that can probe such conformational changes under solution conditions that are physiologically relevant. Although it is generally considered a low-resolution structural technique, when used to study conformational changes as a function of time, ligand binding, or protein interactions, SAXS can provide rich insight into enzyme behavior, including subtle domain movements. In this perspective, we highlight recent uses of SAXS to probe structural enzyme changes upon ligand and partner-protein binding and discuss tools for signal deconvolution of complex protein solutions.  相似文献   

14.
Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large changes particularly between right-handed alpha-helical and extended conformations are seen. Our work further provides an account of conformational changes in the dihedral angles space. The findings reported here are expected to assist in providing a framework for predicting protein-ligand complexes and for template-based prediction of protein function.  相似文献   

15.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are tetrameric proteins that evoke electrical rhythmicity in specialized neurons and cardiomyocytes. The channels are activated by hyperpolarizing voltage but are also receptors for the intracellular ligand adenosine-3′,5′-cyclic monophosphate (cAMP) that enhances activation but is unable to activate the channels alone. Using fcAMP, a fluorescent derivative of cAMP, we analyzed the effect of ligand binding on HCN2 channels not preactivated by voltage. We identified a conformational flip of the channel as an intermediate state following the ligand binding and quantified it kinetically. Globally fitting the time courses of ligand binding and unbinding revealed modest cooperativity among the subunits in the conformational flip. The intensity of this cooperativity, however, was only moderate compared to channels preactivated by hyperpolarizing voltage. These data provide kinetic information about conformational changes proceeding in nonactivated HCN2 channels when cAMP binds. Moreover, our approach bears potential for analyzing the function of any other membrane receptor if a potent fluorescent ligand is available.  相似文献   

16.
Limited proteolysis experiments were performed to study conformation changes induced by ligand binding on in vitro produced wild-type and I747T mutant glucocorticoid receptors. Dexamethasone-induced conformational changes were characterized by two resistant proteolysis fragments of 30 and 27 kDa. Although dexamethasone binding affinity was only slightly altered by the I747T substitution (Roux, S., Térouanne, B., Balaguer, P., Loffreda-Jausons, N., Pons, M., Chambon, P., Gronemeyer, H., and Nicolas, J.-C. (1996) Mol. Endocrinol. 10, 1214-1226), higher dexamethasone concentrations were required to obtain the same proteolysis pattern. This difference was less marked when proteolysis experiments were conducted at 0 degrees C, indicating that a step of the conformational change after ligand binding was affected by the mutation. In contrast, RU486 binding to the wild-type receptor induced a different conformational change that was not affected by the mutation. Analysis of proteolysis fragments obtained in the presence of dexamethasone or RU486 indicated that the RU486-induced conformational change affected the C-terminal part of the ligand binding domain differently. These data suggest that the ligand-induced conformational change occurs via a multistep process. In the first step, characterized by compaction of the ligand binding domain, the mutation has no effect. The second step, which stabilizes the activated conformation and does not occur at 4 degrees C, seems to be a key element in the activation process that can be altered by the mutation. This step could involve modification of the helix H12 position, explaining why the conformation induced by RU486 is not affected by the mutation.  相似文献   

17.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   

18.
Fluorescence investigations of calmodulin hydrophobic sites   总被引:3,自引:0,他引:3  
Calmodulin activation of target enzymes depends on the interaction between calmodulin hydrophobic regions and some enzyme areas. The Ca2+ induced exposure of calmodulin hydrophobic sites was studied by means of 2-p-toluidinylnaphthalene-6-sulfonate, a fluorescent probe. Scatchard and Job plots showed that the calmodulin-Ca42+ complex bound two molecules of this hydrophobic probe, with KD congruent to 1.4 X 10(-4) M. These sites are not totally exposed until calmodulin has bound four Ca2+ per molecule, so the conformational change is not over before the four specific Ca2+ - binding sites are saturated with Ca2+.  相似文献   

19.
4,4'-bis(1-anilino-8-naphthalenesulfonic acid (Bis-ANS), an environment-sensitive fluorescent probe for hydrophobic region of proteins, binds specifically to the C-terminal domain of lambda repressor. The binding is characterized by positive cooperativity, the magnitude of which is dependent on protein concentration in the concentration range where dimeric repressor aggregates to a tetramer. In this range, positive cooperativity becomes more pronounced at higher protein concentrations. This suggests a preferential binding of Bis-ANS to the dimeric form of the repressor. Binding of single operator OR1 to the N-terminal domain of the repressor causes enhancement of fluorescence of the C-terminal domain bound Bis-ANS. The binding of single operator OR1 also leads to quenching of fluorescence of tryptophan residues, all of which are located in the hinge or the C-terminal domain. Thus two different fluorescent probes indicate an operator-induced conformational change which affects the C-terminal domain. The significance of this conformational change with respect to the function of lambda repressor has been discussed.  相似文献   

20.
The Escherichia coli L-leucine receptor is an aqueous protein and the first component in the distinct transport pathway for hydrophobic amino acids. L-leucine binding induces a conformational change, which enables the receptor to dock to the membrane components. To investigate the ligand-induced conformational change and binding properties of this protein, we used (19)F NMR to probe the four tryptophan residues located in the two lobes of the protein. The four tryptophan residues were labeled with 5-fluorotryptophan and assigned by site-directed mutagenesis. The (19)F NMR spectra of the partially ligand free proteins show broadened peaks which sharpen when L-leucine is bound, showing that the labeled wild-type protein and mutants are functional. The titration of L-phenylalanine into the 5-fluorotryptophan labeled wild-type protein shows the presence of closed and open conformers. Urea-induced denaturation studies support the NMR results that the wild-type protein binds L-phenylalanine in a different manner to L-leucine. Our studies showed that the tryptophan to phenylalanine mutations on structural units linked to the binding pocket produce subtle changes in the environment of Trp18 located directly in the binding cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号