首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently identified BNIP-2, a previously cloned Bcl-2- and E1B-associated protein, as a putative substrate of the FGF receptor tyrosine kinase and showed that it possesses GTPase-activating activity toward Cdc42 despite the lack of homology to previously described catalytic domains of GTPase-activating proteins (GAPs). BNIP-2 contains many arginine residues at the carboxyl terminus, which includes the region of homology to the noncatalytic domain of Cdc42GAP, termed BNIP-2 and Cdc42GAP homology (BCH) domain. Using BNIP-2 glutathione S-transferase recombinants, it was found that its BCH bound Cdc42, and contributed the GAP activity. This domain was predicted to fold into alpha-helical bundles similar to the topology of the catalytic GAP domain of Cdc42GAP. Alignment of exposed arginine residues in this domain helped to identify Arg-235 and Arg-238 as good candidates for catalysis. Arg-238 matched well to the arginine "finger" required for enhanced GTP hydrolysis in homodimerized Cdc42. Site-directed mutagenesis confirmed that an R235K or R238K mutation severely impaired the BNIP-2 GAP activity without affecting its binding to Cdc42. From deletion studies, a region adjacent to the arginine patch ((288)EYV(290) on BNIP-2) and the Switch I and Rho family-specific "Insert" region on Cdc42 are involved in the binding. The results indicate that the BCH domain of BNIP-2 represents a novel GAP domain that employs an arginine patch motif similar to that of the Cdc42-homodimer.  相似文献   

2.
3.
Hoffman GR  Nassar N  Cerione RA 《Cell》2000,100(3):345-356
The RhoGDI proteins serve as key multifunctional regulators of Rho family GTP-binding proteins. The 2.6 A X-ray crystallographic structure of the Cdc42/RhoGDI complex reveals two important sites of interaction between GDI and Cdc42. First, the amino-terminal regulatory arm of the GDI binds to the switch I and II domains of Cdc42 leading to the inhibition of both GDP dissociation and GTP hydrolysis. Second, the geranylgeranyl moiety of Cdc42 inserts into a hydrophobic pocket within the immunoglobulin-like domain of the GDI molecule leading to membrane release. The structural data demonstrate how GDIs serve as negative regulators of small GTP-binding proteins and how the isoprenoid moiety is utilized in this critical regulatory interaction.  相似文献   

4.
Mishra R  Gara SK  Mishra S  Prakash B 《Proteins》2005,59(2):332-338
Ras superfamily GTP-binding proteins regulate important signaling events in the cell. Ras, which often serves as a prototype, efficiently hydrolyzes GTP in conjunction with its regulator GAP. A conserved glutamine plays a vital role in GTP hydrolysis in most GTP-binding proteins. Mutating this glutamine in Ras has oncogenic effects, since it disrupts GTP hydrolysis. The analysis presented here is of GTP-binding proteins that are a paradox to oncogenic Ras, since they have the catalytic glutamine (Glncat) substituted by a hydrophobic amino acid, yet can hydrolyze GTP efficiently. We term these proteins HAS-GTPases. Analysis of the amino acid sequences of HAS-GTPases reveals prominent presence of insertions around the GTP-binding pocket. Homology modeling studies suggest an interesting means to achieve catalysis despite the drastic hydrophobic substitution replacing the key Glncat of Ras-like GTPases. The substituted hydrophobic residue adopts a "retracted conformation," where it is positioned away from the GTP, as its role in catalysis would be unproductive. This conformation is further stabilized by interactions with hydrophobic residues in its vicinity. These interacting residues are strongly conserved and hydrophobic in all HAS-GTPases, and correspond to residues Asp92 and Tyr96 of Ras. An experimental support for the "retracted conformation" of Switch II arises from the crystal structures of Ylqf and hGBP1. This conformation allows us to hypothesize that, unlike in classical GTPases, catalytic residues could be supplied by regions other than the Switch II (i.e., either the insertions or a neighboring domain).  相似文献   

5.
We present the 1.9 A resolution crystal structure of the catalytic domain of Gyp1p, a specific GTPase activating protein (GAP) for Ypt proteins, the yeast homologues of Rab proteins, which are involved in vesicular transport. Gyp1p is a member of a large family of eukaryotic proteins with shared sequence motifs. Previously, no structural information was available for any member of this class of proteins. The GAP domain of Gyp1p was found to be fully alpha-helical. However, the observed fold does not superimpose with other alpha-helical GAPs (e.g. Ras- and Cdc42/Rho-GAP). The conserved and catalytically crucial arginine residue, identified by mutational analysis, is in a comparable position to the arginine finger in the Ras- and Cdc42-GAPs, suggesting that Gyp1p utilizes an arginine finger in the GAP reaction, in analogy to Ras- and Cdc42-GAPs. A model for the interaction between Gyp1p and the Ypt protein satisfying biochemical data is given.  相似文献   

6.
The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.  相似文献   

7.
Fidyk N  Wang JB  Cerione RA 《Biochemistry》2006,45(25):7750-7762
The small GTPase Cdc42 has been implicated in a number of cellular responses ranging from the regulation of the actin cytoskeletal architecture to intracellular trafficking and cell cycle progression. Cdc42 mutants that constitutively exchange GDP for GTP but still hydrolyze GTP (called 'fast-cycling' mutants) promote cellular transformation, whereas Cdc42 mutants that are unable to hydrolyze GTP and are irreversibly trapped in the GTP-bound state often inhibit cell growth. In this work, we have set out to further establish that Cdc42 needs to cycle between its 'on' and 'off' states to stimulate cell growth, by examining the consequences of manipulating its GTP-binding/GTP hydrolytic cycle in two different ways. One approach was to examine whether substitutions that act in a manner opposite to the 'fast cyclers', and extend the lifetime of the activated GTP-bound state by slowing the GTP hydrolytic reaction (i.e., 'slow-cycling' mutations), positively influence cell growth. Indeed we show that one such slow-cycling mutant, Cdc42[Y32A], which is insensitive to Cdc42GAP but still exhibits a measurable intrinsic GTP hydrolytic activity, gives rise to increased levels of activated Cdc42 in NIH 3T3 cells. We go on to show that the Y32A mutant stimulates the actin cytoskeletal changes that lead to filopodia formation, confer growth advantages to fibroblasts under low serum conditions, and enable cells to grow to high densities when exposed to normal levels of serum. The second approach was to determine whether the transforming activity of the fast-cycling Cdc42[F28L] mutant can be reversed by compensating for its accelerated nucleotide exchange reaction through the expression of the GTPase-activating protein (Cdc42GAP) and the ensuing stimulation of GTP hydrolytic activity. We showed that expression of the limit functional domain of Cdc42GAP inhibited Cdc42[F28L]-induced transformation, as well as selectively reversed the transformed phenotypes caused by the hyperactivation of wild-type Cdc42 in cells expressing the oncogenic version of Dbl (for Diffuse B cell lymphoma), a guanine nucleotide exchange factor for Cdc42 and the related Rac and Rho GTPases. Overall, the results reported here establish the requirement for Cdc42 to cycle between its signaling-on and -off states in order to positively influence cell growth and highlight how the Cdc42GAP can play an important role in regulating cell proliferation.  相似文献   

8.
The YopE cytotoxin of Yersinia pseudotuberculosis is an essential virulence determinant that is injected into the eukaryotic target cell via a plasmid-encoded type III secretion system. Injection of YopE into eukaryotic cells induces depolymerization of actin stress fibres. Here, we show that YopE exhibits a GTPase-activating protein (GAP) activity and that the presence of YopE stimulates downregulation of Rho, Rac and Cdc42 activity. YopE has an arginine finger motif showing homology with those found in other GAP proteins. Exchange of arginine 144 with alanine, located in this arginine finger motif, results in an inactive form of YopE that can no longer stimulate GTP hydrolysis by the GTPase. Furthermore, a yopE(R144A) mutant is unable to induce cytotoxicity on cultured HeLa cells in contrast to the corresponding wild-type strain. Expression of wild-type YopE in cells of Saccharomyces cerevisiae inhibits growth, while in contrast, expression of the inactive form of YopE, YopE(R144A), does not affect the yeast cells. Co-expression of proteins belonging to the Rho1 pathway of yeast, Rho1, Rom2p, Bck1 and Ste20, suppressed the growth phenotype of YopE in yeast cells. These results provide evidence that YopE exhibits a GAP activity to inactivate RhoGTPases, leading to depolymerization of the actin stress fibres in eukaryotic cells and growth inhibition in yeast.  相似文献   

9.
The molecular mechanism by which dual‐specificity RasGAPs of the Gap1 subfamily activate the GTP hydrolysis of both Rap and Ras is an unresolved phenomenon. RasGAPs and RapGAPs use different strategies to stimulate the GTPase reaction of their cognate G‐proteins. RasGAPs contribute an arginine finger to orient through the Gln61 of Ras the nucleophilic water molecule. RapGAP contributes an asparagine (Asn thumb) into the active site to substitute for the missing Gln61. Here, by using steady‐state kinetic assays and time‐resolved Fourier‐transform infrared spectroscopy (FTIR) experiments with wild type and mutant proteins, we unravel the remarkable mechanism for the specificity switch. The plasticity of GAP1IP4BP and RASAL is mediated by the extra GTPase‐activating protein (GAP) domains, which promote a different orientation of Ras and Rap's switch‐II and catalytic residues in the active site. Thereby, Gln63 in Rap adopts the catalytic role normally taken by Gln61 of Ras. This re‐orientation requires specific interactions between switch‐II of Rap and helix‐α6 of GAPs. This supports the notion that the specificities of fl proteins versus GAP domains are potentially different.  相似文献   

10.
Ras specific GTPase activating proteins (GAPs), neurofibromin and p120GAP, bind GTP bound Ras and efficiently complement its active site. Here we present comparative data from mutations and fluorescence-based assays of the catalytic domains of both RasGAPs and interpret them using the crystal structures. Three prominent regions in RasGAPs, the arginine-finger loop, the phenylalanine-leucine-arginine (FLR) region and alpha7/variable loop contain structural fingerprints governing the GAP function. The finger loop is crucial for the stabilization of the transition state of the GTPase reaction. This function is controlled by residues proximal to the catalytic arginine, which are strikingly different between the two RasGAPs. These residues specifically determine the orientation and therefore the positioning of the arginine finger in the Ras active site. The invariant FLR region, a hallmark for RasGAPs, indirectly contributes to GTPase stimulation by forming a scaffold, which stabilizes Ras switch regions. We show that a long hydrophobic side-chain in the FLR region is crucial for this function. The alpha7/variable loop uses several conserved residues including two lysine residues, which are involved in numerous interactions with the switch I region of Ras. This region determines the specificity of the Ras-RasGAP interaction.  相似文献   

11.
IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic “arginine finger” seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099–1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42·GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.The small GTPase Ras functions as a binary switch in cell signaling processes. When bound to GTP, Ras is able to interact with effector proteins, including Raf kinase, and alter their activities. Ras signaling is terminated when bound GTP is hydrolyzed to GDP and inorganic phosphate. The basal rate of GTP hydrolysis on Ras is quite slow (∼1.2 × 10–4 s–1), but this rate of hydrolysis can be enhanced ∼105-fold by interaction with a GTPase-activating protein (GAP)2 (1). Several RasGAPs have been identified to date including p120 RasGAP and neurofibromin (NF1). The Rho family of Ras-related small GTPases also function as binary switches in cell signaling processes. Whereas the intrinsic rate of GTP hydrolysis on Rho proteins is faster than Ras, this rate can also be stimulated by interaction with a RhoGAP. Examination of the structures of the GAP domains of p120RasGAP (2), neurofibromin (3), SynGAP (4), and the GAP domains from the RhoGAPs p50 RhoGAP and the Bcr homology domain of phosphatidylinositol 3-kinase (5, 6) indicates that although ostensibly different, these all-helical domains are structurally related (7).IQGAP1 was discovered by chance during an attempt to isolate novel matrix metalloproteinases (8). Analysis reveals that the protein contains several discrete domains and motifs including a region containing four isoleucine- and glutamine-rich motifs (IQ repeats) and a region with sequence homology to the Ras-specific GAP domains of p120RasGAP, NF1, and SynGAP (24, 8). Subsequently, two homologs, IQGAP2 and IQGAP3, have been discovered. The IQ repeats have been shown to mediate binding to calmodulin and calmodulin-like proteins (e.g. S100, myosin essential light chain), whereas the GAP-related domain (GRD) does not appear to bind to Ras but instead is necessary for binding to the Rho family GTPases Cdc42 and Rac1, primarily in their active forms (911). However, instead of accelerating hydrolysis of GTP, IQGAP1 preserves the activated states of Cdc42 and Rac1 to the extent that overexpression of IQGAP1 in cells increases the levels of active GTPase (12). Because IQGAP1 expression increases the level of activated Cdc42, initially there was some confusion as to whether the protein might not represent a novel guanine nucleotide exchange factor. However it now appears that IQGAP1 is an effector of Cdc42 and Rac1 and preserves their activated states by tightly binding to the GTPases and stabilizing them in a conformation not conducive to GTP hydrolysis. IQGAP1 appears to be such an important effector for Cdc42 that abrogation of binding to IQGAP1 not only reduces the levels of active Cdc42, it also reduces membrane-localized Cdc42 and the cellular response to bradykinin (12).A growing body of evidence implicates IQGAP1 in carcinogenesis. Expression of IQGAP1 increases during the transition from a minimally to a highly metastastic form of melanoma, and IQGAP1 has been found to be overexpressed in ovarian, breast, lung, and colorectal cancers (1317). In vitro, overexpressed IQGAP1 enhances cell motility and invasiveness in a process that requires Cdc42 and Rac (18). β-Catenin is one of the many binding partners of IQGAP1 identified to date. IQGAP1 has been shown to bind to β-catenin and interfere with β-catenin binding to α-catenin, an interaction necessary for stable cell-cell adhesion (19). Another study found that IQGAP2 knock-out mice overexpress IQGAP1 and developage-dependent liver cancer and apoptosis (20).To better understand how a protein domain homologous to others that accelerate GTP hydrolysis can function as an effector and preserve the GTP-bound state, we have determined the x-ray structure of the IQGAP1 GRD. Despite low sequence identity, the GRD structure is quite similar to the GAP domains of p120, neurofibromin, and SynGAP; however, unlike those domains, the GRD possesses a conserved threonine in place of the catalytic arginine finger and has a 31-residue insertion that projects from one end of the molecule. Using the coordinates of Ras·GDP·AlF3 in complex with the GAP domain of p120, we built a model of Cdc42·GTP bound to the GRD. The model indicates that a steric clash between the conserved Thr1046 and the phosphate-binding loop of Cdc42 and other subtle changes within the active site would likely preclude nucleotide hydrolysis. Sequence conservation mapped to the surface of the GRD indicates that the surface with the highest degree of conservation overlaps with the surface that makes contacts to Cdc42 in the model.  相似文献   

12.
ADP-ribosylation factor (ARF) proteins are key players in numerous vesicular trafficking events ranging from the formation and fusion of vesicles in the Golgi apparatus to exocytosis and endocytosis. To complete their GTPase cycle, ARFs require a guanine nucleotide-exchange protein to catalyze replacement of GDP by GTP and a GTPase-activating protein (GAP) to accelerate hydrolysis of bound GTP. Recently numerous guanine nucleotide-exchange proteins and GAP proteins have been identified and partially characterized. Every ARF GAP protein identified to date contains a characteristic zinc finger motif. GIT1 and GIT2, two members of a new family of G protein-coupled receptor kinase-interacting proteins, also contain a putative zinc finger motif and display ARF GAP activity. Truncation of the amino-terminal region containing the zinc finger motif prevented GAP activity of GIT1. One zinc molecule was found associated per molecule of purified recombinant ARF-GAP1, GIT1, and GIT2 proteins, suggesting the zinc finger motifs of ARF GAPs are functional and should play an important role in their GAP activity. Unlike ARF-GAP1, GIT1 and GIT2 stimulate hydrolysis of GTP bound to ARF6. Accordingly we found that the phospholipid dependence of the GAP activity of ARF-GAP1 and GIT proteins was quite different, as the GIT proteins are stimulated by phosphatidylinositol 3,4, 5-trisphosphate whereas ARF-GAP1 is stimulated by phosphatidylinositol 4,5-bisphosphate and diacylglycerol. These results suggest that although the mechanism of GTP hydrolysis is probably very similar in these two families of ARF GAPs, GIT proteins might specifically regulate the activity of ARF6 in cells in coordination with phosphatidylinositol 3-kinase signaling pathways.  相似文献   

13.
Transport of precursor proteins across chloroplast membranes involves the GTPases Toc33/34 and Toc159 at the outer chloroplast envelope. The small GTPase Toc33/34 can homodimerize, but the regulation of this interaction has remained elusive. We show that dimerization is independent of nucleotide loading state, based on crystal structures of dimeric Pisum sativum Toc34 and monomeric Arabidopsis thaliana Toc33. An arginine residue is--in the dimer--positioned to resemble a GAP arginine finger. However, GTPase activation by dimerization is sparse and active site features do not explain catalysis, suggesting that the homodimer requires an additional factor as coGAP. Access to the catalytic center and an unusual switch I movement in the dimeric structure support this finding. Potential binding sites for interactions within the Toc translocon or with precursor proteins can be derived from the structures.  相似文献   

14.
The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.  相似文献   

15.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

16.
BACKGROUND: The means by which the protein GAP accelerates GTP hydrolysis, and thereby downregulates growth signaling by p21Ras, is of considerable interest, particularly inasmuch as p21 mutants are implicated in a number of human cancers. A GAP "arginine finger," identified by X-ray crystallography, has been suggested as playing the principal role in the GTP hydrolysis. Mutagenesis studies, however, have shown that the arginine can only partially account for the 10(5)-fold increase in the GAP-accelerated GTPase rate of p21. RESULTS: We report electron spin-echo envelope modulation (ESEEM) studies of GAP-334 complexed with GMPPNP bound p21 in frozen solution, together with molecular-dynamics simulations. Our results indicate that, in solution, the association of GAP-334 with GTP bound p21 induces a conformational change near the metal ion active site of p21. This change significantly reduces the distances from the amide groups of p21 glycine residues 60 and 13 to the divalent metal ion. CONCLUSIONS: The movement of glycine residues 60 and 13 upon the binding of GAP-334 in solution provides a physical basis to interpret prior mutagenesis studies, which indicated that Gly-60 and Gly-13 of p21 play important roles in the GAP-dependent GTPase reaction. Gly-60 and Gly-13 may play direct catalytic roles and stabilize the attacking water molecule and beta,gamma-bridging oxygen, respectively, in p21. The amide proton of Gly-60 could also play an indirect role in catalysis by supplying a crucial hydrogen bonding interaction that stabilizes loop L4 and therefore the position of other important catalytic residues.  相似文献   

17.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

18.
Rheb, an activator of mammalian target of rapamycin (mTOR), displays low intrinsic GTPase activity favoring the biologically activated, GTP-bound state. We identified a Rheb mutation (Y35A) that increases its intrinsic nucleotide hydrolysis activity ~10-fold, and solved structures of both its active and inactive forms, revealing an unexpected mechanism of GTP hydrolysis involving Asp65 in switch II and Thr38 in switch I. In the wild-type protein this noncanonical mechanism is markedly inhibited by Tyr35, which constrains the active site conformation, restricting the access of the catalytic Asp65 to the nucleotide-binding pocket. Rheb Y35A mimics the enthalpic and entropic changes associated with GTP hydrolysis elicited by the GTPase-activating protein (GAP) TSC2, and is insensitive to further TSC2 stimulation. Overexpression of Rheb Y35A impaired the regulation of mTORC1 signaling by growth factor availability. We demonstrate that the opposing functions of Tyr35 in the intrinsic and GAP-stimulated GTP catalysis are critical for optimal mTORC1 regulation.  相似文献   

19.
A variety of pathogenic bacteria use type III secretion pathways to translocate virulence proteins into host eukaryotic cells. YopE is an important virulence factor that is translocated into mammalian cells via a plasmid-encoded type III system in Yersinia spp. YopE action in mammalian cells promotes the disruption of actin filaments, cell rounding and blockage of phagocytosis. It was reported recently that two proteins with sequence similarity to YopE, SptP of Salmonella typhimurium and ExoS of Pseudomonas aeruginosa, function as GTPase-activating proteins (GAPs) for Rho GTPases. YopE contains an 'arginine finger' motif that is present in SptP, ExoS and other Rho GAPs and is essential for catalysis by this class of proteins. We show here that a GST-YopE fusion protein stimulated in vitro GTP hydrolysis by the Rho family members Cdc42, RhoA and Rac1, but not by Ras. Conversion of the essential arginine in the arginine finger motif to alanine (R144A) eliminated the in vitro GAP activity of GST-YopE. Infection assays carried out with a Yersinia pseudotuberculosis strain producing YopER144A demonstrated that GAP function was essential for the disruption of actin filaments, cell rounding and inhibition of phagocytosis by YopE in HeLa cells. Furthermore, the GAP function of YopE was important for Y. pseudotuberculosis pathogenesis in a mouse infection assay. Transfection of HeLa cells with a vector that produces a constitutively active form of RhoA (RhoA-V14) prevented the disruption of actin filaments and cell rounding by YopE. Production of an activated form of Rac1 (Rac1-V12), but not RhoA-V14, in HeLa cells interfered with YopE antiphagocytic activity. These results demonstrate that YopE functions as a RhoGAP to downregulate multiple Rho GTPases, leading to the disruption of actin filaments and inhibition of bacterial uptake into host cells.  相似文献   

20.
The effectors of monomeric GTP-binding proteins can influence interactions with GTPase-activating proteins (GAPs) in two ways. In one case, effector and GAP binding to the GTP-binding protein is mutually exclusive. In another case, the GTP-binding protein bound to an effector is the substrate for the GTPase-activating protein. Here predictions for these two mechanisms were tested for the Arf1 effector GGA and ASAP family Arf GAPs. GGA inhibited Arf GAP activity of ASAP1, AGAP1, ARAP1, and Arf GAP1 and inhibited binding of Arf1.GTPgammaS to AGAP1 with K(i) values correlating with the K(d) for the GGA.Arf1 complex. ASAP1 blocked Arf1.GTPgammaS binding to GGA with a K(i) similar to the K(d) for the ASAP.Arf1.GTPgammaS complex. No interaction of GGA with ASAP1 was detected. Consistent with GGA sequestering Arf from GAPs, overexpression of GGA slowed the rate of Arf dissociation from the Golgi apparatus following treatment with brefeldin A. Mutational analysis revealed the amino-terminal alpha-helix and switch I of Arf1 contributed to interaction with both GGA and GAPs. These data exclude the mechanism previously documented for Arf GAP1/coatomer in which Arf1 is inactivated in a tripartite complex. Instead, termination of Arf1 signals mediated through GGA require that Arf1.GTP dissociates from GGA prior to interaction with GAP and consequent hydrolysis of GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号