首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Gap junctions and the propagation of cell survival and cell death signals   总被引:9,自引:0,他引:9  
Gap junctions are a unique type of intercellular channels that connect the cytoplasm of adjoining cells. Each gap junction channel is comprised of two hemichannels or connexons and each connexon is formed by the aggregation of six protein subunits known as connexins. Gap junction channels allow the intercellular passage of small (< 1.5 kDa) molecules and regulate essential processes during development and differentiation. However, their role in cell survival and cell death is poorly understood. We review experimental data that support the hypothesis that gap junction channels may propagate cell death and survival modulating signals. In addition, we explore the hypothesis that hemichannels (or unapposed connexons) might be used as a paracrine conduit to spread factors that modulate the fate of the surrounding cells. Finally, direct signal transduction activity of connexins in cell death and survival pathways is addressed.These authors share senior authorship.This study was supported by Ghent University GOA grant no. 12050502.This revised version was published online in May 2005 with corrections to one authors email address.  相似文献   

3.
Adenosine modulates the survival of chick embryo retinal neurons in culture. When cultures were incubated for 3 days and refed with fresh medium, a large proportion of neurons died in the subsequent 3 days of culture. This cell death was prevented by preincubation of cultures for at least 24h with adenosine plus the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), an adenosine uptake blocker nitrobenzylthioinosine (NBI), the adenosine A2A receptor agonist 2-[4-(2-carboxyethyl) phenethylamino]-5-N-ethylcarboxamidoadenosine (CGS21680), or the permeant cyclic AMP analog 8-bromo cyclic AMP, but not the A1 receptor agonist cyclohexyladenosine (CHA). Adenosine deaminase induced cell death when added to culture medium, and this effect was prevented by EHNA. Cell death was not observed when the medium was replaced by a conditioned medium from sister cultures. The data strongly suggest that adenosine regulates the survival of developing retinal neurons by a long-term activation of A2A receptors and the increase of cyclic AMP levels.  相似文献   

4.
Both apoptotic and autophagic pathways are activated in cells during anticancer treatment using DNA-damaging agents. Thus, the outcome is balanced between apoptotic cell death and enhanced autophagy, with the possibility of prolonged cell survival. It seems intuitively obvious that this survival mechanism might interfere with the desired tumor cell killing. We addressed this question by tipping the balance in favor of autophagy, using etoposide or cisplatin at low, sublethal doses. Over 4 days, only a little apoptosis was observed, but both drugs sharply increased autophagic flux. Surprisingly, cells underwent a cell cycle arrest at G2/M, followed later by mitotic catastrophe with formation of multipolar spindles, missegregated chromosomes, or enlarged, irregular, sometimes multiple nuclei. Why? The answer is that even a low level of DNA damage not only upregulates autophagy, but also provokes the recruitment of an autophagy-related protein, ATG5, to the nucleus, where it binds BIRC5/survivin, thereby interfering with correct assembly of the chromosome passenger complex needed for cytokinesis.  相似文献   

5.
ATG5     
《Autophagy》2013,9(1):176-177
Both apoptotic and autophagic pathways are activated in cells during anticancer treatment using DNA-damaging agents. Thus, the outcome is balanced between apoptotic cell death and enhanced autophagy, with the possibility of prolonged cell survival. It seems intuitively obvious that this survival mechanism might interfere with the desired tumor cell killing. We addressed this question by tipping the balance in favor of autophagy, using etoposide or cisplatin at low, sublethal doses. Over 4 days, only a little apoptosis was observed, but both drugs sharply increased autophagic flux. Surprisingly, cells underwent a cell cycle arrest at G2/M, followed later by mitotic catastrophe with formation of multipolar spindles, missegregated chromosomes, or enlarged, irregular, sometimes multiple nuclei. Why? The answer is that even a low level of DNA damage not only upregulates autophagy, but also provokes the recruitment of an autophagy-related protein, ATG5, to the nucleus, where it binds BIRC5/survivin, thereby interfering with correct assembly of the chromosome passenger complex needed for cytokinesis.  相似文献   

6.
CD4+ T cells die in individuals infected with HIV, either as a result of direct HIV infection or as uninfected innocent bystanders. Possible mechanisms for bystander killing include generation of viral products such as Tat or gp120 and expression of death receptor ligands, such as FasL, that engage functional death receptors on uninfected cells. This review covers the sometimes conflicting in vitro and ex vivo studies that address these possible mechanisms of HIV-associated cell death. It is an intriguing possibility that manipulation of cell death processes, to decrease bystander death or increase death of infected cells, in patients infected with HIV might provide a useful adjunct to antiretroviral therapy.  相似文献   

7.
J.M. Yoo  C. Yun  N.Q. Bui  J. Oh  S.Y. Nam 《IRBM》2019,40(1):45-50

Background

Stem cell therapy has a huge potential to enhance the recovery of damaged tissues and organs. However, it has been reported that majority of implanted stem cells cannot survive after implantation. Therefore, noninvasive monitoring of stem cell viability is essential to estimate the efficacy of stem cell therapy. However, current imaging methods have disadvantages for monitoring of stem cell viability such as cost, penetration depth, and safety. To overcome the limitations, photoacoustic imaging well known for sufficient penetration depth, relatively low cost, and non-ionizing radiation can be a novel alternative assessment method of stem cell viability.

Methods

In this study, indocyanine green was used as exogenous photoacoustic contrast agents to label mesenchymal stem cells. The photoacoustic signals were acquired before and after the cell death and quantified to monitor photoacoustic signal changes related to the cell viability.

Results

The fluorescence intensity changes of ICG labeled MSCs corresponded to decrease of PA intensity after cell death. Furthermore, the PA imaging of MSCs showed similarity between the PA intensity and the cell viability.

Conclusion

The experimental results imply the feasibility of noninvasive detection of stem cell viability during therapeutic procedures.  相似文献   

8.
9.
10.
Chemokine receptors are members of the G protein coupled receptor (GPCR) supergene family whose expression is highly restricted to hematopoietic cells. Although the primary role of chemokine and chemokine receptor interaction is believed to be regulation of chemotaxis of leukocytes, subsequent information clearly suggests that multiple immune regulatory functions are attributed to chemokine receptor signaling. We recently showed that activation of the CC chemokine 9 receptor (CCR9), a thymus-specific chemokine receptor, led to potent cFLIPL-independent resistance to cycloheximide-induced apoptosis and modest resistance to Fas-mediated apoptosis possibly via activation of multiple signaling components involving Akt and glycogen synthase kinase 3. The fact that these two apoptotic signals involve activation of similar arrays of death execution machinery such as caspase-8, caspase-9, or caspase-3, suggests that chemokine receptor signaling may provide a wide range of antiapoptotic activities to hematopoietic cells under certain biological conditions. GPCR is a large family of cell surface receptors, many of which are critically involved in hormonal and behavioral control. Recent observations also suggest that GPCR signaling plays a pivotal role in immune cell activation. Heterotrimeric G protein is an integral part of GPCR signaling. Thus, dissection of signaling components involved in the CCR9-mediated antiapoptosis could be a framework for cell survival mechanisms and may provide options for therapeutic interventions for neurdegenerative diseases or T cell malfunctioning.  相似文献   

11.
The effect of inhibition of phenylpropanoid biosynthesis on the growth of Medicago sativa L. suspension culture was studied. 2-Aminoindan-2-phosphonic acid (AIP), a potent inhibitor of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), caused a marked reduction in the amount of hydroxycinnamic acid derivatives in a few hours after cell inoculation into AIP medium. The treatment of alfalfa suspension culture with this inhibitor increased the extractable PAL activity and elevated ethylene production during the growth cycle. The addition of AIP (10 μ M ) stimulated cell division activity during the growth cycle, although the onset of cell division was slightly delayed. The maxima of cytokinin content as well as of the mitotic index were postponed in AIP-treated cells, however, the unchanged content of cytokinins did not correlate with increased mitotic activity of treated cells. The decreased level of hydroxycinnamic acid derivatives, which represent the phenolic conjugation partners of free polyamines (PAs), influenced the rate of PA conjugation. Consequently, the balance between free and conjugated PAs was shifted in favor of the free PA form. A potential role of the reduction of the pool of phenolic acids in the enhancement of cell division of alfalfa cell suspension culture is discussed.  相似文献   

12.
Glycosphingolipids (GSLs) comprise a class of lipids with important structural and signaling functions. Synthesized from ceramide in the Golgi, they are subsequently distributed to different compartments, most predominantly in the plasma membrane where they integrate signaling platforms. A recently characterized trafficking of ganglioside GD3 (GD3), a GSLs with two sialic-acid residues, to mitochondria has revealed a novel function of this lipid as a death effector. In addition to the interaction of GD3 with mitochondria recruiting these organelles to apoptotic pathways, GD3 disables survival paths dependent on NF-B, thus favoring the balance towards cell death. The present review gathers the evidence documenting this emerging function of GSLs in cell death and their involvement in pathological states. Published in 2004..  相似文献   

13.

Background

Hematopoietic stem/progenitor cells (HSPCs) maintain the hematopoietic system by balancing their self-renewal and differentiation events. Hematopoietic stem cells also migrate to various sites and interact with their specific microenvironment to maintain the integrity of the system. Rho GTPases have been found to control the migration of hematopoietic cells and other cell types. Although the role of RAC1, RAC2 and CDC42 has been studied, the role of RHOA in human hematopoietic stem cells is unclear.

Results

By utilizing constitutively active and dominant negative RHOA, we show that RHOA negatively regulates both in vitro and in vivo migration and dominant negative RHOA significantly increased the migration potential of human HSC/HPCs. Active RHOA expression favors the retention of hematopoietic stem/progenitor cells in the niche rather than migration and was found to lock the cells in the G0 cell cycle phase thereby affecting their long-term self-renewal potential.

Conclusion

The current study demonstrates that down-regulation of RHOA might be used to facilitate the migration and homing of hematopoietic stem cells without affecting their long-term repopulating ability. This might be of interest especially for increasing the homing of ex vivo expanded HSPC.  相似文献   

14.
Balancing cellular demise and survival constitutes a key feature of resilience mechanisms that underlie the control of epithelial tissue damage. These resilience mechanisms often limit the burden of adaptive cellular stress responses to internal or external threats. We recently identified Diedel, a secreted protein/cytokine, as a potent antagonist of apoptosis-induced regulated cell death in the Drosophila intestinal midgut epithelium during aging. Here, we show that Diedel is a ligand for RGD-binding Integrins and is thus required for maintaining midgut epithelial cell attachment to the extracellular matrix (ECM)-derived basement membrane. Exploiting this function of Diedel, we uncovered a resilience mechanism of epithelial tissues, mediated by Integrin–ECM interactions, which shapes cell death spreading through the regulation of cell detachment and thus cell survival. Moreover, we found that resilient epithelial cells, enriched for Diedel–Integrin–ECM interactions, are characterized by membrane association of Catalase, thus preserving extracellular reactive oxygen species (ROS) balance to maintain epithelial integrity. Intracellular Catalase can relocalize to the extracellular membrane to limit cell death spreading and repair Integrin–ECM interactions induced by the amplification of extracellular ROS, which is a critical adaptive stress response. Membrane-associated Catalase, synergized with Integrin–ECM interactions, likely constitutes a resilience mechanism that helps balance cellular demise and survival within epithelial tissues.

A key feature of the resilience mechanisms that underlie the control of epithelial tissue damage is the balance between cell death and survival. This study shows that the anti-oxidant enzyme catalase can relocate to membranes in order to promote the resilience of the Drosophila midgut epithelium, synergizing with integrin-ECM interactions to prevent the spread of cell death.  相似文献   

15.

Introduction

Human fetal liver (HFL) is a valuable source of hematopoietic stem/progenitor cells (HSCs) for the treatment of various hematological disorders. This study describes the effect of sucrose addition to a cryoprotective medium in order to reduce the Me2SO concentration during cryopreservation of HFL hematopoietic cell preparations.

Methods

Human fetal liver (HFL) cells of 8–12 weeks of gestation were cryopreserved with a cooling rate of 1 °C/min down to −80 °C and stored in liquid nitrogen. The cryoprotectant solutions contained 2% or 5% Me2SO (v/v) with or without sucrose at a final concentration of 0.05, 0.1, 0.2 or 0.3 M. The metabolic activity of HFL cells was determined using the alamar blue assay. For the determination of the number and survival of hematopoietic progenitors present, cells were stained with CD34 (FITC) and 7-AAD, and analyzed by flow cytometry. The colony-forming activity of HFL hematopoietic stem/progenitor cells after cryopreservation was assessed in semisolid methylcellulose.

Results

The addition of sucrose to the cryoprotective medium produced a significant reduction in HFL cell loss during cryopreservation. The metabolic activity of HFL cells, cryopreserved with 5% Me2SO/0.3 M sucrose mixture was comparable to cryopreservation in 5% Me2SO/10% FCS. Although the inclusion of sucrose did not affect the survival of CD34+ cells in HFL after cryopreservation it did improve the functional capacity of hematopoietic stem/progenitor cells.

Conclusion

The inclusion of sucrose as an additive to cryoprotective media for HFL cells enables a reduction in the concentration of Me2SO, replacing serum and increasing the efficiency of cryopreservation.  相似文献   

16.
Signals generated by the extracellular matrix (ECM) promote cell survival. We have shown that chondrocytes detached from their native ECM and plated without serum at low density on poly-L-lysine undergo significant cell death that is associated with the production of reactive oxygen species (ROS). No cell death or ROS production was observed when cells were plated on fibronectin under the same conditions. Cell death on poly-L-lysine could be completely inhibited with the addition of either antioxidants or inhibitors of specific protein kinase C (PKC) isoforms including PKC-I. PKC-I was noted to translocate from the cytosol to the particulate membrane after plating on poly-L-lysine, and this translocation was inhibited by the addition of an antioxidant. Time-course analyses implicated endogenous ROS production as a secondary messenger leading to PKC-I activation and subsequent chondrocyte cell death. Cell survival on poly-L-lysine was significantly improved in the presence of oligomycin or DIDS, suggesting that ROS production occurred via complex V of the electron transport chain of the mitochondria and that ROS were released to the cytosol via voltage-dependent anion channels. Together, these results represent a novel mechanism by which ROS can initiate cell death through the activation of PKC-I. articular cartilage; osteoarthritis; cell signaling; fibronectin  相似文献   

17.
《Autophagy》2013,9(2):66-74
Autophagy (specifically macroautophagy) is an evolutionarily conserved catabolic process where the cytoplasmic contents of a cell are sequestered within double membrane vacuoles, called autophagosomes, and subsequently delivered to the lysosome for degradation. Autophagy can function as a survival mechanism in starving cells. At the same time, extensive autophagy is commonly observed in dying cells, leading to its classification as an alternative form of programmed cell death. The functional contribution of autophagy to cell death has been a subject of great controversy. However, several recent loss-of-function studies of autophagy (Atg) genes have begun to address the roles of autophagy in both cell death and survival. Here, we review the emerging evidence in favor of and against autophagic cell death, discuss the possible roles that autophagic degradation might play in dying cells, and identify salient issues for future investigation.  相似文献   

18.
Autophagy (specifically macroautophagy) is an evolutionarily conserved catabolic process where the cytoplasmic contents of a cell are sequestered within double membrane vacuoles, called autophagosomes, and subsequently delivered to the lysosome for degradation. Autophagy can function as a survival mechanism in starving cells. At the same time, extensive autophagy is commonly observed in dying cells, leading to its classification as an alternative form of programmed cell death. The functional contribution of autophagy to cell death has been a subject of great controversy. However, several recent loss-of-function studies of autophagy (atg) genes have begun to address the roles of autophagy in both cell death and survival. Here, we review the emerging evidence in favor of and against autophagic cell death, discuss the possible roles that autophagic degradation might play in dying cells, and identify salient issues for future investigation.  相似文献   

19.
Apoptosis in the liver and its role in hepatocarcinogenesis   总被引:12,自引:0,他引:12  
Apoptosis seems to be the predominant type of active cell death in the liver (type I), while in other tissues cells may die via biochemically and morphologically different pathways (type II, type III). Active cell death is under the control of growth factors and death signals. In the liver, endogenous factors, such as transforming growth factor 1 (TGF-1), activin A, CD95 ligand, and tumor necrosis factor (TNF) may be involved in induction of apoptosis. Release and action of these death factors seems to be triggered by exogenous signals such as withdrawal of hepato-mitogens, food restriction, etc.During stages of hepatocarcinogenesis, not only DNA synthesis but also apoptosis gradually increase from normal to preneoplastic to adenoma and carcinoma tissue. Also, in human carcinomas, birth and death rates of cells are several times higher than in surrounding liver. (Pre)neoplastic liver cells are more susceptible than normal hepatocytes to stimulation of cell replication and of cell death. Consequently, tumor promoters may act as survival factors, i.e., inhibit apoptosis preferentially in preneoplastic and even in malignant liver cells, thereby stimulating selective growth of (pre)neoplastic lesions. On the other hand, regimens favoring apoptosis and lowering cell replication may result in selective elimination of (pre)neoplastic cell clones from the liver. Finally, we have studied the first stage of carcinogenesis, namely the appearance of putatively initiated cells after a single dose of the genotoxic carcinogen N-nitrosomorpholine (NNM). Most of these cells were found to be eliminated by apoptosis, suggesting that initiation, at the organ level, can be reversed at least partially by preferential elimination of initiated cells. These events may be regulated by autocrine or paracrine actions of survival factors.  相似文献   

20.
Under stress, red blood cells (RBCs) undergo programmed cell death (eryptosis). One of the signaling molecules for eryptosis, sphingomyelinase (SMase), plays an important role in monitoring the efficacy of vascular targeted cancer therapy. The high optical absorption of erythrocytes coupled with the changes of eryptotic RBCs makes RBCs ideal targets for the photoacoustic (PA) detection and characterization of vascular treatments. In this work, experiments characterizing eryptosis were performed: PA detection of high frequencies (>100 MHz) that enabled analysis at the single‐cell level and of low frequencies (21 MHz) that enabled analysis at the RBC ensemble level. Ultrasound spectral analysis was performed on control and SMase‐treated RBCs. Spectral unmixing was applied to quantify methemoglobin production as a by‐product of RBC death. Validation was performed using a blood gas analyzer and optical spectrometry. Our results indicate that PA radiofrequency spectra could be used to differentiate the biochemically induced morphological changes as RBCs lose their native biconcave shape, and release hemoglobin into the surroundings. Spectral unmixing revealed a 7% increase in methemoglobin content for SMase‐treated samples due to the oxidative stress on the RBCs. These findings suggest that PA spectral analysis of RBC death can potentially serve as a biomarker of the efficacy of vascular targeted cancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号