首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effects of GA on stem elongation were studied using segments from one tall and three dwarf light-grown pea genotypes varying in endogenous hormone content. Stem segments were cut at two distinct ages: when the fourth internode was at about 6–13% of full expansion (early-expansion) or at 18–25% of full expansion (mid-expansion). Light microscopy and flow cytometry were used to demonstrate that GA does not induce cell division in excised pea stem segments. The growth studied here was strictly elongation. Measurement of final segment length after 48 hours and high resolution measurement of growth kinetics over 20 hours using an angular position transducer were done on segments treated with hormone solutions. Our data indicate that the action of GA on stem elongation can be classified into two distinct modes. The first, apparent in early-expansion stem segments, shows distinct growth kinetics and is independent of the endogenous IAA concentration of the segments. Quantitation of IAA by GC/MS in early-expansion segments of wild type pea incubated with gibberellin shows that an increase in IAA concentration is part of the GA response in such segments. The second mode of GA action is evinced in mid-expansion segments. Whereas there is no short term (<20 h) response to GA alone (as determined by growth kinetics), there is a long term (48 h) response whose magnitude decreases across the genotypes with decreasing endogenous hormone content. Growth responses indicate that in mid-expansion segments exogenous GA acts by enhancing IAA action but appears to be unable to augment endogenous IAA content. Contradictory reports of the response of excised stem segments to GA can be reconciled when tissue genotype and developmental stage are considered.  相似文献   

2.
Gibberellin-auxin interaction in pea stem elongation   总被引:7,自引:4,他引:3       下载免费PDF全文
Joint application of gibberellic acid and indole-3-acetic acid to excised stem sections, terminal cuttings, and decapitated plants of a green dwarf pea results in a markedly synergistic growth response to these hormones. Synergism in green tall pea stem sections is comparatively small, although growth is kinetically indistinguishable from similarly treated dwarf sections.

Gibberellin-induced growth does not appear to be mediated through its effect on auxin synthesis, since gibberellin pretreatment of dwarf cuttings fails to elicit an enhanced tryptophan-induced growth response of sections, whereas auxin-induced growth is strongly enhanced. Also, tryptophan-gibberellin synergism is not significant in sections and cuttings of green dwarf peas, while auxin-gibberellin synergism is.

Administration of gibberellic acid prior to indole-3-acetic acid results in greatly increased growth. In reversed order, the application fails to produce any synergistic interaction. This indicates that gibberellin action must precede auxin action in growth regulation.

  相似文献   

3.
Yang T  Law DM  Davies PJ 《Plant physiology》1993,102(3):717-724
Exogenously applied indole-3-acetic acid (IAA) strongly promoted stem elongation over the long term in intact light-grown seedlings of both dwarf (cv Progress No. 9) and tall (cv Alaska) peas (Pisum sativum L.), with the relative promotion being far greater in dwarf plants. In dwarf seedlings, solutions of IAA (between 10-4 and 10-3 M), when continuously applied to the uppermost two internodes via a cotton wick, increased whole-stem growth by at least 6-fold over the first 24 h. The magnitude of growth promotion correlated with the applied IAA concentration from 10-6 to 10-3 M, particularly over the first 6 h of application. IAA applied only to the apical bud or the uppermost internode of the seedling stimulated a biphasic growth response in the uppermost internode and the immediately lower internode, with the response in the latter being greatly delayed. This demonstrates that exogenous IAA effectively promotes growth as it is transported through intact stems. IAA withdrawal and reapplication at various times enabled the separation of the initial growth response (IGR) and prolonged growth response (PGR) induced by auxin. The IGR was inducible by at least 1 order of magnitude lower IAA concentrations than the PGR, suggesting that the process underlying the IGR is more sensitive to auxin induction. In contrast to the magnitude of the IAA effect in dwarf seedlings, applied IAA only doubled the growth in tall seedlings. These results suggest that endogenous IAA is more growth limiting in dwarf plants than in tall plants, and that auxin promotes stem elongation in the intact plant probably by the same mechanism of action as in isolated stem segments. However, since dwarf plants to which IAA was applied failed to reach the growth rate of tall plants, auxin cannot be the only limiting factor for stem growth in peas.  相似文献   

4.
Auxin-induced growth, epidermal cell length, cellular osmotic potential, and cell wall composition of coleoptile segments excised from one normal and two dwarf rice strains were studied 2, 3, 4, and 5 days after soaking. The auxin-induced growth was higher at the early stages of coleoptile growth and decreased with age, being always higher in normal than in the two dwarf strains. A good correlation between auxin-induced growth and auxin-induced decrease in the minimum stress-relaxation time has been found, suggesting that the different growth capacity in response to auxin among the three different strains is due to differences in the structure of their cell walls. In fact, cell wall analysis revealed that (1) the relative α-cellulose content of the cell walls was higher in the two dwarf strains than in the normal one, and (2) the auxin-induced decrease in noncellulosic glucose was high, compared with dwarf strains, in the normal strain, which showed the higher auxin-induced growth, showing a highly significant correlation between the decrease in noncellulosic glucose and the growth in response to auxin. Thus, the different growth between normal and dwarf strains might be attributed to their different capacity to degrade β-glucan of their cell walls.  相似文献   

5.
Auxin-induced growth, epidermal cell length, cellular osmotic potential, and cell wall composition of coleoptile segments excised from one normal and two dwarf rice strains were studied 2, 3, 4, and 5 days after soaking. The auxin-induced growth was higher at the early stages of coleoptile growth and decreased with age, being always higher in normal than in the two dwarf strains. A good correlation between auxin-induced growth and auxin-induced decrease in the minimum stress-relaxation time has been found, suggesting that the different growth capacity in response to auxin among the three different strains is due to differences in the structure of their cell walls. In fact, cell wall analysis revealed that (1) the relative -cellulose content of the cell walls was higher in the two dwarf strains than in the normal one, and (2) the auxin-induced decrease in noncellulosic glucose was high, compared with dwarf strains, in the normal strain, which showed the higher auxin-induced growth, showing a highly significant correlation between the decrease in noncellulosic glucose and the growth in response to auxin. Thus, the different growth between normal and dwarf strains might be attributed to their different capacity to degrade -glucan of their cell walls.  相似文献   

6.
The effect of auxin on growth, mechanical properties of thecell wall and cell wall sugar composition in rice coleoptilesegments excised at different ages from seedlings growing underdifferent conditions were investigated. Auxin markedly inducedgrowth only in segments excised from coleoptiles in the fastgrowth phase with a high content of non cellulosic glucose intheir cell walls. The response to auxin decreased with coleoptileage, accompanying a decrease in the amount of the noncellulosicglucose in the cell wall, suggesting a correlation between noncellulosicglucose content and growth capacity in response to auxin. Goodcorrelation among auxin-induced growth, auxin-induced decreasein the To value and auxin-induced decrease in the noncellulosicglucose content of the cell wall also was found. 1 Present address: Departamento Fisiologia Vegetal, Facultadde Ciencias, Universidad de Salamanca, Salamanca, Spain. (Received May 21, 1979; )  相似文献   

7.
Auxin-Gibberellin Interactions in Pea: Integrating the Old with the New   总被引:4,自引:1,他引:3  
Recent findings on auxin-gibberellin interactions in pea are reviewed, and related to those from studies conducted in the 1950s and 1960s. It is now clear that in elongating internodes, auxin maintains the level of the bioactive gibberellin, GA1, by promoting GA1 biosynthesis and by inhibiting GA1 deactivation. These effects are mediated by changes in expression of key GA biosynthesis and deactivation genes. In particular, auxin promotes the step GA20 to GA1, catalyzed by a GA 3-oxidase encoded by Mendel’s LE gene. We have used the traditional system of excised stem segments, in which auxin strongly promotes elongation, to investigate the importance for growth of auxin-induced GA1. After excision, the level of GA1 in wild-type (LE) stem segments rapidly drops, but the auxin indole-3-acetic acid (IAA) prevents this decrease. The growth response to IAA was greater in internode segments from LE plants than in segments from the le-1 mutant, in which the step GA20 to GA1 is impaired. These results indicate that, at least in excised segments, auxin partly promotes elongation by increasing the content of GA1. We also confirm that excised (light-grown) segments require exogenous auxin in order to respond to GA. On the other hand, decapitated internodes typically respond strongly to GA1 application, despite being auxin-deficient. Finally, unlike the maintenance of GA1 content by auxin, other known relationships among the growth-promoting hormones auxin, brassinosteroids, and GA do not appear to involve large changes in hormone level.  相似文献   

8.
Rapid Production of Auxin-induced Ethylene   总被引:2,自引:2,他引:0       下载免费PDF全文
The time course of auxin-induced ethylene production was determined in mesocotyl segments of etiolated sorghum (Sorghum bicolor L. Moench) seedlings. The latent period between addition of auxin and a detectable rise in ethylene release was 15 to 20 minutes in four different genotypes. This may indicate that the initial effect of auxin on ethylene production is too rapid to involve synthesis of an ethylene-producing enzyme. The technique devised for these experiments involves placing tissue segments end to end in a glass tube, and it allows simultaneous determination of growth and ethylene production.  相似文献   

9.
Acid-induced growth was compared to auxin-induced growth. After a transient pH 4-induced increase in the elongation rate was completed, auxin could still induce an enhanced rate of elongation in soybean (Glycine max) hypocotyl segments. This auxin response occurred both when the medium was changed to pH 6 before auxin addition, and when the auxin was added directly to the pH 4 medium. This postacid response to auxin was persistent, and quite unlike a postacid response to acid, which was again shortlived. One mm N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (pH 7) inhibited the first response to auxin (the first response to auxin being similar to the acid response), but not the second response. This did not appear to be simply a hydrogen ion neutralizing effect, however, since a 50-fold increase in buffer concentration at pH 6 did not inhibit the first response. Decrease in the pH of the external medium, previously shown to occur with excised soybean hypocotyl segments, was not affected by auxin. Furthermore, this pH drop, during which the cells appear to be adjusting their external pH to about 5.4, did not result in an increased rate of elongation. Addition of auxin after the equilibrium pH had been attained did not alter the pH, but it did increase the rate of elongation, eliciting a normal auxin response. It was concluded that hydrogen ions do not mediate in long term auxin-induced elongation in soybean hypocotyl.  相似文献   

10.
Ethylene increases the pith peroxidase activity of intact tobacco plants (Nicotiana tabacum) but not of excised pith, either at atmospheric or reduced pressures. In the intact plant, the increased activity involves augmentation of the two constitutive anodic isoperoxidases. In the excised pith, ethylene strongly represses one injury-induced isoperoxidase, while not markedly affecting other isozymes known to be repressed by auxin. Thus, the previously described auxin-induced repression of peroxidase is not due mainly to auxin-induced ethylene formation.  相似文献   

11.
White light suppressed the stem growth and promoted leaf expansion. With increased irradiance the light effect was enhanced. The morphogenetic effects induced by light and by dwarf-mutation are similar. However, the nature of phenotyplc and genotyplc dwarfism is different. In the dwarf mutants the auxin level is not changed in contrast to the GA, ABA and QGC contents. Under high irradiance which depressed the stem growth, auxin and GA-levels were lowered while the content of QGC and of growth-inhibitor non-identical with ABA increased, but the level of ABA was not affected. The sensitivity of various pea forms to the light and to exogenous phytohormones (GA and IAA) is different. The plants with the shortest stems were more sensitive to light and GA. Data on the stem growth and rhizogenesis induced by light and by GA are presented. The metabolism of 2-14C-PCA (precursor of QGC) in tall and dwarf forms is different. The possible role of phytohormones and some phenolic compounds in the regulation of growth and morphogenesis of phenotyplc and genotyplc dwarf forms is discussed.  相似文献   

12.
Interveinal strips (10 x 1.5 mm) excised from growing tobacco (Nicotiana tabacum L. cv Xanthi) leaves curled >300[deg] when incubated for 20 h in 5 to 500 [mu]M [alpha]-naphthalene acetic acid or 50 to 500 [mu]M indole-3-acetic acid. Epinasty was not induced without auxin or by the auxin analog [beta]-naphthalene acetic acid, and less substantial epinasty was induced in midrib and vein segments. Auxin treatment increased the length of both surfaces of strips. Curvature resulted from greater growth on the adaxial side. Epinastic sensitivity of strips to auxin appeared first in the distal third of young leaves (blade 4.5-6.0 cm). In older leaves (8-10 and 12-14 cm), the interveinal tissues throughout were sensitive, whereas in leaves 16- to 18-cm long, sensitivity was reduced in the distal two-thirds. Amino-oxyacetic acid (AOA), an ethylene biosynthesis inhibitor, partially inhibited epinasty at 100 [mu]M. However, a poor correlation between inhibition of ethylene biosynthesis by AOA and its inhibition of curvature and the inability of ethylene to produce epinasty or to reverse the effects of AOA suggests that auxin-induced epinasty is not caused by auxin-induced ethylene production.  相似文献   

13.
14.
Effect of Gibberellic Acid on Dwarf and Normal Pea Plants   总被引:2,自引:0,他引:2  
Gibberellic acid at concentrations between 10 and 100 mg/1 greatly stimulated the elongation growth of intact dwarf pea plant but showed little or no effect on that of Alaska pea. It showed no effect on the elongation growth of excised stem segments of either dwarf or normal pea when given alone. Indole-3-acetic acid stimulated the elongation of excised segments of both varieties. Gibberellic acid synergistically enhanced the indole-3-acetic acid-induced elongation of excised segments. Tryptophan also stimulated the elongation of these segments. Gibberellic acid showed a synergistic effect on the tryptophan-induced elongation, as on the indole-3-acetic acidinduced one. Gibberellic acid reduced the lag period of tryptophan-induced elongation, suggesting that gibberellic acid promotes the conversion of tryptophan to auxin.  相似文献   

15.
During recent years, genetic approaches have become invaluable tools to analyse signalling chains in plants. The first step to understand auxin signalling is the isolation of signal transduction mutants. In Arabidopsis, screening for auxin resistant plants has identified a number of mutants. However, it is difficult to link the mutated genes to the rapid growth response to auxin. As yet, there is no published method to measure auxin-induced growth at a sufficient temporal resolution. A novel auxanometer described here will close that gap. Hypocotyl segments are immersed in buffer in a flow-through cuvette. A CCD-camera attached to a microscope is used to image markings on the hypocotyl surfaces and to track their movements across the field of view.To illustrate the applicability of this method for analysing mutants we compared the growth responses of tomato wild type with the mutant diageotropica (dgt). We showed that the mutation completely abolished all phases of the rapid growth reaction to applied auxin. This excludes the possibility that the reduced auxin sensitivity reported in the literature is due to a reduced or delayed response. Our technique was modified for use with the tiny Arabidopsis thaliana hypocotyl segments and inflorescence stems. In both systems auxin induced a growth response after a lag phase of 15–20 minutes. The new method will now be used to characterise the physiological effect of the mutations in auxin signalling.  相似文献   

16.
Decapitation of peas ( Pisum sativum L. cv. Greenfeast) promoted sprouting of the lower buds with the most active growth in the first week occurring in the bud at the lowest fully expanded leaf node. Addition of 3-indolyl acetic acid (IAA; a 0.03 M solution, applied al 10 and 25 μg/plant) inhibited bud outgrowth whether added to the cut stump or injected above or below the lowest leaf node. Ethylene evolution by the nodal region decreased following decapitation, but increased greatly if IAA was added to the cut stump. Ethylene gas (3, 15 and 1 500 ul/l) or the precursor ACC (l-aminocyclopropane-I-carboxylic acid) reduced bud outgrowth while factors which scrub ethylene (mercuric perchlorate). inhibit ethylene synthesis (canaline), or prevent its action (silver nitrate), enhanced bud growth on decapitated plants, It was concluded that auxin-induced inhibition of bud growth through an increase in ethylene synthesis is a more logical hypothesis than the direct inhibition by auxin per se since a) acropetal movement of the inhibitory principle occurred whereas [14C] IAA movement in stems was basipetal, b) a decline in the levels of ethylene evolution was correlated with bud outgrowth in decapitated plants and c) exogenous application of chemical agents which increase or decrease ethylene level or response lead to correlative decreases or increases in bud outgrowth, respectively.  相似文献   

17.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

18.
N-ethylmaleimide (NEM) Lit 10-100 μ M led to a strong inhibition of the auxin-induced elongation growth of colcoptile segments, while fusicoccin-enhanced growth was not affected. Growth inhibition occurred only if NEM and auxin were allowed to act simultaneously. Preincubation of plant segments with NEM in the absence of auxin caused no inhibition of a subsequent growth stimulation by auxin, whenever NEM was removed before the application of IAA. However, preincubation with NEM plus auxin led to a remaining growth inhibition, which could not be reversed by a second auxin incubation in the absence of NEM. Fusicoccin added to NEM- plus auxin-treated segments was able to restore growth. It is suggested that auxin causes the unmasking of essential SH-groups of a protein to which NEM links covalently. thus inhibiting the growth process. This assumption was further supported by labeling experiments wish [14C]-NEM using membranes of maize ( Zea mays L. cv. Inraplus) coleoptiles. Two membrane fractions (S2= 480-1900 g; S4= 4300-15000 g) revealed a significantly higher [14C]-NEM labeling in the presence of auxin (2,4-diehlorophe-noxyacctic acid compared to 2,6 dichlorophenoxyacetic acid). This effect disappeared when the membranes were previously washed with EGTA [ethyleneglycolbis-(β-aminoethylether)-N,N,Nr',N'-tetraacetic acid]. The auxin-induced sensitization of coleoptilc segments against thiol-reagents and the auxin-induced expression of SH-groups of proteins of isolated membranes from coleoptiles arc suggested to be events involved in the primary action of auxins.  相似文献   

19.
Gibberellin A4&7 was more effective than gibberellic acid in increasing shoot elongation when applied to the apex of intact Lycopersicum esculentum seedlings of Tiny Tim, a dwarf cultivar, and Winsall, a tall cultivar. After 14 days, gibberellic acid and gibberellin A4&7 stimulated growth of the dwarf more than the tall tomato. In tall tomato the application of indole-3-acetic acid alone (6.1 μg/plant) showed an inhibitory growth effect, but when applied with 17.5 μg per plant of gibberellic acid, it had a synergistic effect at 7 days but not at 14 days. When the auxin concentration was reduced to 0.61 μg per plant a synergistic effect was observed on tall plants at 7 and 14 days between indole-3-acetic acid and gibberellic acid. Application of gibberellin A4&7 with auxin did not give a synergistic response in tall or dwarf tomato.  相似文献   

20.
Auxin-regulated Wall Loosening and Sustained Growth in Elongation   总被引:18,自引:9,他引:9       下载免费PDF全文
It is proposed that auxin regulates and coordinates both wall loosening and the supply of wall materials in elongation. The tenets of the proposal allowed testable predictions. It was determined that, if the cell walls of Glycine max L. var. Wayne hypocotyl segments are maintained in a loosened state (by excising the segments directly into pH 4 medium), exogenous auxin induced only the second response. It was also predicted and confirmed that elongating systems, e.g. pea epicotyl, with certain early auxin-induced growth kinetics (an initial high non-steady-state rate followed immediately by a drop to a lower steady-state rate) would show a transient second response (in addition to the usual transient first response) when stimulated by pH 4 medium. Finally, it is pointed out that recent results which establish the existence of auxin-induced elongation-associated proteins support the proposition that auxin coordinates wall loosening and the supply of wall materials in elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号