首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strain TA102 of S. typhimurium is a new histidine-requiring mutant, particularly suited to the detection of oxidative mutagens acting at A.T base pairs. 10 oxidizing chemicals, previously tested in strain TA102, were used to evaluate the mutagenic sensitivity of the L-arabinose forward mutation assay of S. typhimurium with respect to those types of mutagens. The mutagenicity of each compound was determined by liquid test, measuring both the frequency of mutants among the survivors and the absolute number of mutants growing in selective plates with traces of D-glucose. Strain BA13 with a wild-type lipopolysaccharide barrier was used as compared to the deep rough derivative strain BA9. The chemicals studied were: bleomycin, t-butyl hydroperoxide, chromium trioxide, cumene hydroperoxide, formaldehyde, glyoxal, glutaraldehyde, hydrogen peroxide, paraquat, and phenylhydrazine. Additionally, ultrasonic oscillation was used as a presumable non-mutagenic lethal control treatment. The L-arabinose forward mutation assay detected the mutagenic activity of all the chemicals under study with a high degree of sensitivity, including paraquat which is unable to revert strain TA102. Positive responses were obtained at doses equivalent to or 10 times lower than the doses detected by strain TA102. The results support the idea that the L-arabinose forward mutation assay could replace the set of specific tester strains used by the histidine reverse mutation assay in general screening for genetic toxins.  相似文献   

2.
The mutagenicity of the base analogue, 2-amino-N6-hydroxyadenine (AHA), was tested in Salmonella typhimurium TA100 and TA98 and in Chinese hamster lung (CHL) cells. AHA showed very potent mutagenicity in TA100 without S9 mix, inducing 25,000 revertants/micrograms. The mutagenicity increased about 2-fold upon addition of S9 mix containing 10 microliters S9. AHA was found to be one of the strongest mutagens for TA100. Addition of S9 mix containing 100 microliters S9 induced no significant increase of revertants with AHA at amounts up to 50 ng per plate. AHA was also mutagenic for the frameshift mutant, TA98, without S9 mix, the mutagenicity for TA98 being about 1/1000 of that for TA100. When the mutagenicity of AHA was tested in CHL cells, with diphtheria toxin resistance (DTr) as a selective marker in the absence of S9 mix with a 3-h treatment of cells, DTr mutants increased dose-dependently at concentrations of 2.5-15 micrograms/ml. When cells were incubated with AHA for 24 h, a 200-fold increase in the number of DTr mutants was observed; the mutagenicity was 500-fold higher than that of ethyl methanesulfonate. This marked increase of mutagenicity by prolonged incubation may indicate that AHA induces mutations mainly after incorporation into DNA. The addition of a small amount of S9 increased the mutagenicity obtained with a 3-h treatment 2-fold, but a larger amount of S9 decreased the mutagenicity as was found with S. typhimurium TA100.  相似文献   

3.
A new hair-dye ingredient, 2-(2',4'-diaminophenoxy)ethanol (2,4-DAPE), was described as being devoid of any genotoxic activity on the basis of a multi-laboratory study. Since 2,4-DAPE is a close analogue of 2,4-diaminoanisole (2,4-DAA), which is mutagenic and carcinogenic, we tested this claim by assaying 2,4-DAPE for bacterial mutagenicity. Two samples of 2,4-DAPE X 2HCl were synthesized by reduction of the corresponding dinitrophenoxyethanol and identity and purity were established by elemental analysis, NMR spectrometry, mass-spectrometry, UV-spectrophotometry, TLC and HPLC. Fresh aqueous solutions of 2,4-DAPE X 2HCl were assayed in several separate plate tests using S. typhimurium TA1538, TA97, TA98 and TA100, and E. coli WP2uvrA (pKM101), 3 plates per dose and 0%, 4%, 10% and 30% Aroclor 1254-induced rat-liver S9 in S9 mixes. We obtained negative results in TA100 and E. coli. Reproducible, statistically significant dose-related increases in revertants (up to 14 times the background) were obtained in frame-shift mutants of S. typhimurium in the dose range 10-80 micrograms per plate. Mutagenicity was S9-dependent, significant increases in revertants being obtained only with 50 microliter per plate or more of S9. 2,4-DAPE induced significant mutagenic effects at doses of less than 1 micrograms per ml in TA1538 and TA98 in fluctuation tests using 2% S9 in the S9 mix. In plate tests, 2,4-DAPE was less mutagenic (by a factor of about 8) than 2,4-DAA, which gave the highest mutant yields with 20 microliter S9 per plate (4% S9 in the S9 mix). 2,4-DAPE obtained commercially was about 8 times more mutagenic than our sample of 2,4-DAPE. After purification, the commercial product, now chromatographically identical with our own sample, gave plate-test results close to those obtained for our samples of 2,4-DAPE. A review of the published reports (in which 2,4-DAPE was claimed to be inactive in a variety of short-term tests) revealed: (a) the use of protocols for bacterial mutagenicity testing which, in the light of our own results, were probably too limited in scope, especially in the choice of conditions for metabolic activation; (b) insufficient information on the identification and purity of the samples of 2,4-DAPE tested in the published collaborative study.  相似文献   

4.
Like all nitrosamines, N-nitrosodiethylamine (NDEA) requires metabolic activation in order to exert its carcinogenic effects. This activation involves cytochrome P450s (CYP), which generates unstable metabolites that react with the DNA of cells in the immediate vicinity of metabolite formation. Although NDEA is carcinogenic, it has been considered a weak mutagen in classic genotoxicity assays. We used optimized Salmonella/mammalian microsome genotoxicity assays to assess the mutagenicity and toxicity of low concentrations of NDEA. Using a fixed concentration of NDEA (36.5 mg/ml), we varied the length of preincubation in the presence of different concentrations of an S9 metabolic activation mixture. Salmonella typhimurium strains TA97 and TA102 were resistant to NDEA-induced mutagenesis, even after a preincubation of up to 120 min and the use of different concentrations of the S9 mix. Strain TA98 was susceptible to mutagenesis by NDEA in the absence of the S9 mix and after preincubation with NDEA for 90 min. When bacteria of this strain were preincubated with NDEA for 60 min, mutagenesis was detected at an S9 mix concentration >9.55 mg/ml. NDEA also induced mutagenesis in strain TA100 after preincubation for 90 or 120 min, and this effect was dependent on the S9 concentration. E. coli strain BH990 also showed a concentration-dependent response, with only 60% of the cells surviving after a 120-min preincubation with NDEA in the presence of 19.1 mg S9 mix/ml.  相似文献   

5.
The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.  相似文献   

6.
The development of an agar plate screening technique has allowed the isolation of a range of mutants of Trichoderma reesei capable of synthesizing cellulase under conditions of high catabolite repression. The properties of one of these mutants (NG-14) is described to illustrate the use of this technique. NG-14 produced five times the filter paper-degrading activity per ml of culture medium and twice the specific activity per mg of excreted protein in submerged culture when compared with the best existing mutant, QM9414. NG-14 also showed enhanced endo-beta-glucanase and beta-glucosidase production. Although these mutants were isolated as cellulase producers in the presence of 5% glycerol on agar plates, in similar liquid medium, NG-14 exhibits only partial derepression of the cellulase complex. Since the proportions of filter paper activity, endo-beta-glucanase, and cellobiase were not the same in mutants NG-14 and QM9414, and the yields of each enzyme under conditions repressive for cellulase synthesis were different, differential control of each enzyme of the cellulase complex is implied. These initial results suggest that the selective technique for isolating hyper-cellulase-producing mutants of Trichoderma will be of considerable use in the development of commercially useful cellulolytic strains.  相似文献   

7.

Background

In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism.

Results

To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose.

Conclusion

Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization, further catabolism of D-glucose can also impede pentose utilization. Nevertheless, the results suggest that co-fermentation of pentoses in the presence of D-glucose can significantly be improved by the overexpression of pentose transporters, especially if they are not inhibited by D-glucose.  相似文献   

8.
We have isolated mutants resistant to acidomycin, a biotin analog, from Serratia marcescens Sr41. Strain SB304, resistant to 0.5 mg of acidomycin (frequently called actithiazic acid) per ml, produced 5 mg of d-biotin per liter of a medium containing sucrose and urea. Strain SB412, which was isolated from SB304 on a minimal agar plate containing 2 mg of acidomycin per ml and 0.1 mg of 5-(2-thienyl)-valeric acid per ml, produced 20 mg of d-biotin per ml. The two enzymes related to biotin synthesis were found to be released from biotin-mediated feedback repression in these mutants. Transductional analysis revealed that SB412 had acquired at least two mutations, one in the biotin operon locus and the other in an unknown locus distant from the biotin operon locus.  相似文献   

9.
The mutagenic activity of isoniazid, N-acetyl-isoniazid and hydrazine dihydrochloride was investigated in S. typhimurium. Isoniazid was found to possess a weak mutagenic activity only in repair-deficient strains TA1535 and TA100 as well as in the plasmid-containing strain TA92 (10-30 mg/plate) in the Ames test without metabolic activation. Addition of microsomal enzymes by S9 mix decreased this direct mutagenic activity. In contrast, preincubation of isoniazid with crude liver homogenate from mice, rats or Syrian golden hamsters for 4 h prior to plating with bacteria liberated a mutagenic compound which is equally active in both repair-deficient and repair wild-type strains (0.5-5 mg/plate). This activation pathway is independent of NADPH, is heat-sensitive and is operative only in a total liver homogenate in suspension. The highest capacity for mutagenic activation was achieved with liver homogenate from hamsters, followed by that from mice and rats. Furthermore, this mutagenic activation is paralleled by formation of hydrazine, as demonstrated in colorimetric measurements with p-dimethylaminobenzaldehyde. N-Acetyl-isoniazid is without mutagenic activity under similar conditions, and liberation of hydrazine was never detected. This means that, besides having a weak direct genetic activity, isoniazid is a promutagen, and formation of hydrazine is the first step in metabolic activation. It is concluded that the genotoxic properties of isoniazid in mammals are primarily determined by the pharmacokinetic behavior of the ultimate reactive metabolite. This result must be taken into consideration in risk assessment performed for mutagenic and carcinogenic properties of isoniazid in man.  相似文献   

10.
Genotoxicity of drinking water from three Korean cities   总被引:4,自引:0,他引:4  
Park JH  Lee BJ  Lee SK  Kim K  Lee KH  Che JH  Kang KS  Lee YS 《Mutation research》2000,466(2):173-178
Organic content of drinking tap water from Seoul, Taejon, and Suwon was extracted with an XAD-2 resin column and organic solvents. Four doses of the extract equivalent to 4, 2, 1, and 0.5 l water were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 in the presence and absence of S9 mix. The organic extracts of the water from all three cities were mutagenic in TA 98 without S9 mix and in TA 100 with and without S9 mix. The highest number of revertants per plate was found in the absence of S9 mix. Three doses of the extract (equivalent to 22, 11, and 3.7 l water) were also tested in the bone marrow micronucleus test using BDF1 mice. At the highest dose, a significant increase of the micronucleus frequency was observed. The time required to be on the effect, however, varied with the source of the water. Our results indicate that the drinking tap waters from the three cities were genotoxic clearly in the bacterial test and also in the in vivo assay with mice. As we found no genotoxicity of the source water as seen in a previous study, it is likely that the chlorination process leads to the genotoxicity of the tap water.  相似文献   

11.
G N Rivrud 《Mutation research》1988,208(3-4):195-200
Small amounts of seminal fluid strongly enhanced the mutagenicity of the precursor mutagen benzo[a]pyrene (BP) in the Salmonella/microsome test. This previously unreported effect was found only in the presence of S9 mix for metabolic activation. The increase far exceeded the additive effect expected from experiments where seminal fluid and BP were tested separately with S9 mix. Testing of the direct-acting mutagen 4-nitro-o-phenylene-diamine (NPD) together with seminal fluid resulted in a lower mutagenic activity than that of NPD alone. Seminal fluid had a bactericidal effect on the Salmonella bacteria, thus only volumes up to 40 microliter could be used per plate. The mutagenic effect of only seminal fluid and S9 mix was slightly increased over controls in a standard Ames test, but was equal to the spontaneous mutation rate with a preincubation test modified according to Kado and coworkers. There were no significant differences between seminal plasma from smokers and non-smokers in any experimental series. Seminal fluid concentrated 20-fold by extraction with the mutagen-removing adsorbant Mutasorb did not have any enhancing effect on the mutagenicity of BP, nor did it exhibit any mutagenic activity in itself with or without S9 mix.  相似文献   

12.
The chromosomal aberration test using a Chinese hamster lung cell line (CHL) was carried out on 1-nitropyrene (NP), 3 dinitropyrenes (DNPs), fluorene and 4 mononitrofluorenes with and without metabolic activation (rat S9 mix). The 3 DNPs (1,3-, 1,6- and 1,8-DNP) induced chromosomal aberrations in the absence of S9 mix. The frequencies of cells with aberrations after treatment for 48 h were 43% at 2 micrograms/ml of 1,3-DNP, 55% at 0.1 microgram/ml of 1,6-DNP and 45% at 0.025 microgram/ml of 1,8-DNP, indicating the order of clastogenic potency as 1,8- greater than 1,6- greater than 1,3-DNP. On the other hand, 1-NP, which is known to be a direct-acting mutagen in bacteria, was negative in the chromosomal aberration test without S9 mix, but clearly positive with S9 mix. This effect was dependent on the concentration of the S9 fraction in the reaction mixture. High-pressure liquid chromatography analysis showed that 1-NP was converted by S9 mix to several metabolites, including 1-aminopyrene (AP). The clastogenic activity of 1-AP, however, was equivocal without S9 mix, suggesting that active clastogens other than 1-AP exist. Fluorene induced chromosomal aberrations only in the presence of S9 mix (61.8% at 25 micrograms/ml). 1-, 2-, 3- and 4-nitrofluorene (NF) were more clastogenic in the presence of S9 mix than in the absence of S9 mix, suggesting that NFs were converted to more active clastogens by S9 mix.  相似文献   

13.
Y Takizawa  N Hachiya 《Mutation research》1984,137(2-3):133-137
Two preparations of maltitol (4-O-alpha-D-glucopyranosyl-D-sorbitol), hydrogenated glucose syrups and maltitol crystal, were examined for genotoxic potential by a battery of short-term tests. In the bacterial reversion assay, maltitol induced no detectable revertants in any of the tester strains, Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538, or Escherichia coli WP2/pKM101 at doses of 0.5-50 mg per plate with and without rat liver S9 mix. In the micronucleus test, no significant increase in the frequency of micronucleated erythrocytes was observed in bone marrow of mice after administration of the two preparations at 3.75-30 g per kg by gastric intubation.  相似文献   

14.
Assessing urine mutagenicity with the Salmonella mutagenicity test is often limited by the volumes of the samples. Optimization of the assay was performed with factorial and Doehlert designs. Two fractional factorial designs 23-1 (3 factors, 4 experiments) were used to estimate the main effects of the percent S9 in the mix, the time of liquid incubation, the inoculum size and the growth conditions. A Doehlert design (3 factors, 13 experiments) was used to study the main effects and the interactions of the NADP, G6P and S9 in the mix. The positive markers were benzo[a]pyrene (BaP, 0.3 μg/plate) and a pool of smokers' urine (SU, 1.25 ml equivalent/plate). The response was limited to the induction factor (IF, number of induced revertants/number of spontaneous revertants) with Salmonella typhimurium TA98. The optimal conditions for BaP were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 50 ml of Nutrient Broth No. 2 from a 250 ml flask. The S9 mix (0.1 ml, final volume) included 1.5% of S9, 1.0 mM NADP and 4.4 mM G6P. The maximal IF was 15.79. The optimal conditions for SU were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 7 ml of Nutrient Broth No. 2 from a 20 × 180 mm tube. The S9 mix (0.1 ml, final volume) included: 4% S9, 4.2 mM NADP and 5.2 mM G6P. The maximal I7F was 10.95. These optimal conditions did not modify the spontaneous frequencies of the tester strains: TA97a, TA98, TA100 and TA102. The dose-response curves of mutagenic urine samples were found to be non-linear. This micromethod required 8-fold less urine sample and 12.5-fold less liver homogenate as compared to the standard plate incorporation assay and was from 6.2- to 11.8-fold more sensitive to evaluate urine mutagenicity. The sensitivity of this technique was found to be limited to individuals smoking more than approx. 5 cigarettes/day by the standard extraction-concentration procedure.  相似文献   

15.
Genotoxic effects of o-phenylphenol metabolites in CHO-K1 cells   总被引:1,自引:0,他引:1  
The effects of microsomal activation and/or deactivation on the induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) in cultured Chinese hamster ovary cells (CHO-K1 cells) by o-phenylphenol (OPP) were studied, and concurrently the metabolites were determined. After a 3-h incubation in the presence of 15% S9 mix (45 microliters/ml of S9), OPP (25-150 micrograms/ml) dose-independent SCEs and chromosomal aberrations were induced, while the amount of phenylhydroquinone (PHQ) metabolite produced from OPP did not increase linearly in the higher doses. The maximum induction of chromosomal aberrations was 18% at the 150 micrograms/ml dose, and of SCEs 13.8/cell at 75 micrograms/ml. The corresponding control values were 3% and 5.8/cell. The lowest dose required to induce SCEs in the presence of S9 mix was 25 micrograms/ml. Changing the percent of S9 mix (0-50%) while holding the OPP dose constant (100 micrograms/ml) produced a correlation between SCEs and the production of PHQ. PHQ caused cytogenetic effects both with and without S9 mix, however, in the absence of S9 mix it was more lethal and was oxidized to phenylbenzoquinone (PBQ). These results suggest that the enhanced cytogenetic effects of OPP by the addition of S9 mix correlated with the amount of PHQ produced or with the further oxides of PHQ such as phenylsemiquinone and/or PBQ which are capable of being produced from PHQ spontaneously or by the mixed-function oxidase system.  相似文献   

16.
In optimizing previously reported coagulase agar media to obtain a rapid, reliable, and inexpensive coagulase test agar, variations in plasmas, pH, buffer system, fibrinogen, and fibrinolytic inhibitor were investigated. The agar with the following composition was determined best for the demonstration of coagulase production by Staphylococcus aureus: 25 ml of 15% bovine fibrinogen (fraction I, type I, citrated, Sigma Chemical Co.), 25 ml of rehydrated rabbit plasma (coagulase plasma ethylenediaminetetraacetic acid, Difco), 10.0 mg of soybean trypsin inhibitor (Schwarz/Mann), and 450 ml of brain heart infusion agar (Difco). In additional studies involving 7 different temperatures and 11 heating times, the thermal destruction of microbial nucleases on plate count agar and coagulase test agar was investigated. Heating the plates for 2.5 h at 65 degrees C destroyed all heatlabile nucleases, but not thermonucleases of S. aureus. A tandem agar plate method for the identification of S. aureus was developed. Coagulase and thermonuclease activity of 50 colonies can be detected on a single agar plate. Suspect S. aureus colonies isolated on various selective media are transferred to coagulase test agar, the plates are incubated at 37 degrees C for 18 h, and the coagulase reaction is recorded. The plates are then heated at 65 degrees C for 2.5 h, overlaid with toluidine blue-metachromatic diffusion agar, and reincubated at 37 degrees C for 3 h, and the thermonuclease reaction is recorded. Studies based on 88 enterotoxigenic S. aureus strains and 133 and 48 suspect S. aureus strains isolated from fresh salami mixtures on mannitol salt and tellurite-polymyxin-egg yolk agars, respectively, demonstrated 100% agreement between the tandem agar plate method and standard coagulase and thermonuclease tests. Overall, the tandem agar plate method is a rapid and convenient approach contributing to the identification of S. aureus from foods.  相似文献   

17.
Hexamethylphosphoramide (HMPA), a potent rat nasal carcinogen by inhalation, and three of its metabolites, pentamethylphosphoramide (PMPA), trimethylphosphoramide (TriMPA), and formaldehyde (HCHO), were assessed in Salmonella typhimurium gene mutation assays using various protocols, including plate incorporation, preincubation and suspension assays. HMPA (tested up to 15 000 μg/plate) was not mutagenic in plate incorporation or preincubation assays with or without metabolic activation. HCHO was mutagenic in the plate incorporation and preincubation assays (tested up to 150 μg/plate). In suspension assays, however, HMPA (tested up to 40 mg/ml), PMPA (up to 44 mg/ml) and HCHO (up to 45 μg/ml), but not TriMPA (up to 29 mg/ml), were mutagenic. HMPA and PMPA were positive only with activation. HMPA's mutagenicity was optimized using a relatively high level of rat liver S9 protein (3.5 mg/plate) in the metabolic activation mixture. Semicarbazide, an HCHO trapping agent, added at concentrations up to 167 μg/ml, markedly inhibited the mutagenic activities of HMPA and PMPA suggesting that HCHO generation may play a role in their mutagenicity. These studies show that HMPA is mutagenic in a modified Salmonella typhimurium reverse mutation assay with metabolic activation. Successive N-demethylation of HMPA eventually eliminates the mutagenic activity which further suggests that HMPA's mutagenic activity is related to the release of HCHO.  相似文献   

18.
Norharman, abundantly present in cigarette smoke and cooked foods, is not mutagenic to Salmonella typhimurium strains. However, norharman shows mutagenicity to S. typhimurium TA98 and YG1024 in the presence of S9 mix when coexisting with aromatic amines, including aniline, o- and m-toluidines. We previously reported that the mutagenicity from norharman and aniline in the presence of S9 mix was due to the formation of a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman). In the present study, we analyzed the mutagens produced by norharman with o- or m-toluidine in the presence of S9 mix. When norharman and o-toluidine were reacted at 37 degrees C for 20 min, two mutagenic compounds, which were mutagenic with and without S9 mix, respectively, were produced, and these were isolated by HPLC. The former mutagen was deduced to be 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) on the basis of various spectral data, and this new heterocyclic amine was confirmed by its chemical synthesis. The latter mutagen was identified to be the hydroxyamino derivative. Amino-3'-methylphenylnorharman induced 41,000 revertants of TA98, and 698,000 revertants of YG1024 per microg with S9 mix. Formation of the same DNA adducts was observed in YG1024 when amino-3'-methylphenylnorharman or a mixture of norharman plus o-toluidine was incubated with S9 mix. These observations suggest that norharman reacts with o-toluidine in the presence of S9 mix to produce amino-3'-methylphenylnorharman, and this compound is metabolically activated to yield its hydroxyamino derivative. After activation by O-acetyltransferase, it might bind to DNA and exert mutagenicity in S. typhimurium TA98 and YG1024. When norharman and m-toluidine were reacted in the presence of S9 mix, 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman) was identified as a mutagen. Thus, the mutagenicity of norharman with m-toluidine may follow a mechanism similar to that with o-toluidine.  相似文献   

19.
Sodium channels have four homologous domains (D1-D4) each with six putative transmembrane segments (S1-S6). The highly charged S4 segments in each domain are postulated voltage sensors for gating. We made 15 charge-neutralizing or -reversing substitutions in the first or third basic residues (arginine or lysine) by replacement with histidine, glutamine, or glutamate in S4 segments of each domain of the human heart Na+ channel. Nine of the mutations cause shifts in the conductance-voltage (G-V) midpoints, and all but two significantly decrease the voltage dependence of peak Na+ current, consistent with a role of S4 segments in activation. The decreases in voltage dependence of activation were equivalent to a decrease in apparent gating charge of 0.5-2.1 elementary charges (eo) per channel for single charge- neutralizing mutations. Three charge-reversing mutations gave decreases of 1.2-1.9 eo per channel in voltage dependence of activation. The steady-state inactivation (h infinity) curves were fit by single- component Boltzmann functions and show significant decreases in slope for 9 of the 15 mutants and shifts of midpoints in 9 mutants. The voltage dependence of inactivation time constants is markedly decreased by mutations only in S4D4, providing further evidence that this segment plays a unique role in activation-inactivation coupling.  相似文献   

20.
The heavy enzyme of gramicidin S synthetase was purified to an almost homogeneous state by a combination of ammonium sulfate fractionation, ornithine-Sepharose 4B chromatography, DEAE-cellulose chromatography, and Ultrogel AcA 22 chromatography. The enzyme was proved to be essentially homogeneous by ultracentrifugation and polyacrylamide disc gel electrophoresis. The heavy enzymes of gramicidin S synthetase from various groups of mutant strains lacking the ability to form gramicidin S were also purified to a similar extent. The sedimentation rates of the purified enzymes from a wild strain and the mutant strains (BI-3, BII-3, BI-9) were studied by analytical centrifugation and sucrose density gradient centrifugation. The enzymes from the wild strain and these mutant strains were all found to have an S20,W value of 12.2 at a protein concentration of 2.5 mg per ml. These results strongly suggest that the failure of specific amino acid activation in the heavy enzyme of these gramicidin-lacking mutants might be due to some modification at the active center of the corresponding amino acid-activating enzyme rather than to a complete absence of the amino acid-activating enzyme protein in the heavy enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号