首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and processing of feline leukemia virus (FeLV) polypeptides were studied in a chronically infected feline thymus tumor cell line, F-422, which produces the Rickard strain of FeLV. Immune precipitation with antiserum to FeLV p30 and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to isolate intracellular FeLV p30 and possible precursor polypeptides. SDS-PAGE of immune precipitates from cells pulse-labeled for 2.5 min with [35S]methionin revealed the presence of a 60,000-dalton precursor polypeptide (Pp60) as well as a 30,000-dalton polypeptide. When cells were grown in the presence of the proline analogue L-azetidine-2-carboxylic acid, a 70,000-dalton precursor polypeptide (Pp70) was found in addition to Pp60 after a 2.5-min pulse. The cleavage of Pp60 could be partially inhibited by the general protease inhibitor phenyl methyl sulfonyl fluoride (PMSF). This partial inhibition was found to occur only if PMSF was present during pulse-labeling. Intracellular Pp70 and Pp60 and FeLV virion p70, p30, p15, p11, and p10 were subjected to tryptic peptide analysis. The results of this tryptic peptide analysis demonstrated that intracellular Pp70 and virion p70 were identical and that both contained the tryptic peptides of FeLV p30, p15, p11, and p10. Pp60 contained the tryptic peptides of FeLV P30, P15, and P10, but lacked the tryptic peptides of P11. The results of pactamycin gene ordering experiments indicated that the small structural proteins of FeLV are ordered p11-p15-p10-p30. The data indicate that the small structural proteins of FeLV are synthesized as part of a 70,000-dalton precursor. A cleavage scheme for the generation of FeLV p70, p30, p15, p11, and p10 from precursor polypeptides is proposed.  相似文献   

2.
Properties of feline leukemia virus. III. Analysis of the RNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
The kinetics of virus labeling was used to study the maturation of viral RNA in the Rickard strain of feline leukemia virus. Viral RNA labeled over differing intervals was characterized by gel electrophoresis and velocity sedimentation in sucrose gradients made up in aqueous buffer and 99% dimethyl sulfoxide. Labeled virus was found within 30 min after adding radioactive uridine to the cells and production of labeled virus reached a maximum at 4 to 5 h after pulse labeling. Native RNA from feline leukemia virus resolved into three size classes when analyzed by electrophoresis on 2.0% polyacrylamide-0.5% agarose gels: a 6.2 x 10(6) to 7.1 x 10(6) mol wt (50 to 60S) class, an 8.7 x 10(4) mol wt (approximately 8S) class, and a 2.5 x 10(4) mol wt (4 to 5S) class. From two experiments during which RNA degradation appeared minimal, these made up to 57 to 76%, 2 to 5%, and 6 to 12%, respectively, of the total RNA. The 8S RNA in feline leukemia virus has not previously been reported. The 50 to 60S RNA from virus harvested after 4 h of labeling electrophoretically migrated faster and sedimented more slowly in sucrose gradients than did the same RNA species harvested after 20 h of labeling. This argues for an intravirion modification of the high-molecular-weight RNA. The large subunits of denatured viral RNA from both 4- and 20-h labeled-viral RNA electrophoretically migrated with an estimated molecular weight of 3.2 x 10(6) but sedimented with 28S ribosomal RNA (1.8 X 10(6) mol wt) when analyzed by velocity sedimentation through 99% dimethyl sulfoxide.  相似文献   

3.
Feline rhinotracheitis virus is an upper-respiratory-tract pathogen of cats. It may also cause generalized infections or abortions. Antigens present in [35S]methionine- or [14C]glucosamine-labeled purified virions, in Nonident P-40 (NP-40) extracts of a mixture of virions and infected cells, and in virion-free cell culture medium, along with mock-infected Crandell -Rees feline kidney cell controls, were analyzed by direct sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or by SDS-PAGE preceded by Staphylococcus aureus protein A immunoprecipitation. The direct SDS-PAGE analysis revealed at least 17 virus-specific peptides with molecular weights ranging from less than 200,000 ( 200K ) to more than 30K . Three of these peptides were glycosylated and had molecular weights of 105K , 68K , and 60K. Immunoprecipitates of purified virions and NP-40 extracts contained three major glycoproteins with the same estimated molecular weights as those found by the direct analysis. A prominent 105K glycoprotein was present in virion-free cell culture medium immunoprecipitates. In addition, a number of nonglycosylated feline rhinotracheitis virus-specific polypeptides (eight in virions, three in NP-40 extracts, and nine in virion-free cell culture medium), ranging in molecular weight from 145K to 32K, were present in the various immunoprecipitates.  相似文献   

4.
To examine the protein proximity and subunit organization of type C retroviruses, preparations of AKR murine leukemia virus were treated with bifunctional cross-linking reagents and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The cross-linked components obtained were characterized by immunoprecipitation with monospecific antisera against purified viral proteins, followed by SDS-PAGE analysis both before and after cleavage of the cross-links. With these procedures, complexes of both viral envelope and core components were identified. The major envelope subunit obtained was a large (apparent molecular weight of 450,000 to 500,000), glycosylated complex, composed of four to six gp70-p15(E) subunits. This complex was detected over a 100-fold range of cross-linker concentration and thus seems to represent a particularly stable viral substructure. The cross-linked complexes of the core proteins consisted of oligomers of p30 dimers, suggesting that the p30 dimer is a basic structural unit of the viral core. When virion preparations, which had previously been disrupted with the nonionic detergent Nonidet P-40, were cross-linked, the envelope complex was still observed, indicating that this structure is stable in the presence of Nonidet P-40. A similar envelope structure was observed for feline leukemia virus, suggesting that such a complex may be a conserved feature of oncornavirus structure.  相似文献   

5.
The nucleotide sequence of the gag gene of feline leukemia virus and its flanking sequences were determined and compared with the corresponding sequences of two strains of feline sarcoma virus and with that of the Moloney strain of murine leukemia virus. A high degree of nucleotide sequence homology between the feline leukemia virus and murine leukemia virus gag genes was observed, suggesting that retroviruses of domestic cats and laboratory mice have a common, proximal evolutionary progenitor. The predicted structure of the complete feline leukemia virus gag gene precursor suggests that the translation of nonglycosylated and glycosylated gag gene polypeptides is initiated at two different AUG codons. These initiator codons fall in the same reading frame and are separated by a 222-base-pair segment which encodes an amino terminal signal peptide. The nucleotide sequence predicts the order of amino acids in each of the individual gag-coded proteins (p15, p12, p30, p10), all of which derive from the gag gene precursor. Stable stem-and-loop secondary structures are proposed for two regions of viral RNA. The first falls within sequences at the 5' end of the viral genome, together with adjacent palindromic sequences which may play a role in dimer linkage of RNA subunits. The second includes coding sequences at the gag-pol junction and is proposed to be involved in translation of the pol gene product. Sequence analysis of the latter region shows that the gag and pol genes are translated in different reading frames. Classical consensus splice donor and acceptor sequences could not be localized to regions which would permit synthesis of the expected gag-pol precursor protein. Alternatively, we suggest that the pol gene product (RNA-dependent DNA polymerase) could be translated by a frameshift suppressing mechanism which could involve cleavage modification of stems and loops in a manner similar to that observed in tRNA processing.  相似文献   

6.
J Ghysdael  R Kettmann    A Burny 《Journal of virology》1979,29(3):1087-1098
Bovine leukemia virus 60 to 70S RNA was heat denatured, the polyadenylic acid-containing species were separated by velocity sedimentation, and several size classes were translated in a micrococcal nuclease-treated cell-free system from rabbit reticulocytes. The major RNA species sedimented at 38S and migrated as a single component of molecular weight 2.95 x 10(6) when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The predominant polypeptides of the in vitro translation of bovine leukemia virus 38S RNA were products with molecular weights of 70,000 and 45,000; minor components with molecular weights of 145,000 and 18,000 were also observed. Two lines of evidence indicate that the 70,000- and 45,000-molecular weight polypeptides represent translation products of the gag gene of the bovine leukemia virus genome (Pr70gag and Pr45gag). First, they are specifically precipitated by a monospecific antiserum to the major internal protein, p24, and second, they are synthesized and correctly processed into virion proteins p24, p15, and p10 in Xenopus laevis oocytes microinjected with bovine leukemia virus 38S RNA. The 145,000-molecular weight polypeptide was immunoprecipitated by the anti-p24 serum and not by an antiserum to the major envelope glycoprotein, gp60. It contained all the tryptic peptides of Pr70gag and additional peptides unique to it, and thus represents in elongation product of Pr70gag in an adjacent gene, presumably the pol gene. The 18,000-molecular weight product was antigenically unrelated to p24 and gp60 and shared no peptides in common with Pr70gag, Pr45gag, or the 145,000-molecular weight polypeptide. It was maximally synthesized on a polyadenylic acid-containing virion 16 to 18S RNA, and we present evidence that this RNA is a 3' end-derived subgenomic fragment of the bovine leukemia virus genome rather than a contaminating cellular RNA.  相似文献   

7.
The nucleic acid-binding proteins of bovine leukemia virus (BLV) and feline leukemia virus (FeLV) were isolated in a high state of purity with chloroform-methanol extraction followed by reversed-phase liquid chromatography. Selective solubilization and purity of BLV p12 and FeLV p10 was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The compositions and molecular weights were determined by amino acid analysis. An abundance of lysine and arginine residues along with their size identifies both BLV p12 and FeLV p10 as small basic proteins similar to well-defined type C viral nucleoproteins. NH2-terminal degradation by the semiautomated Edman method provided the sequence of the first 40 amino acids for both proteins. The putative nucleic acid binding site found in several type C viral nucleoproteins was contained within this sequence, with the most homology centered around an eight-amino acid region involving seven identical residues and one substitution. Antisera were developed in rabbits, and specificity and titers were determined by electroblotting and immunoautoradiography. By this technique, an immunological cross-reaction was found between BLV p12 and FeLV p10. The shared antigenic determinant most likely exists in the highly conserved eight-amino acid region. Although this sequence is also highly conserved in the nucleic acid-binding proteins of murine leukemia viruses, the shared antigenic determinant is not found in these or any other type C viruses tested. It is suggested that substitution of arginine (BLV p12/FeLV p10) to lysine (murine leukemia virus p10) is sufficient to elicit a change in antibody specificity.  相似文献   

8.
Murine fibroblasts transformed by transfection with DNA from mink cells infected with the Snyder-Theilen strain of feline sarcoma virus and subgroup B feline leukemia virus were analyzed for the presence of integrated proviral DNA and the expression of feline leukemia virus- and feline sarcoma virus-specific proteins. The transformed murine cells harbored at least one intact feline sarcoma virus provirus, but did not contain feline leukemia virus provirus. The transformed murine cells expressed an 85,000-dalton protein that was precipitated by antisera directed against feline leukemia virus p12, p15, and p30 proteins. No feline oncornavirus-associated cell membrane antigen reactivity was detected on the surfaces of the transformed murine cells by indirect membrane immunofluorescence techniques. The 85,000-dalton feline sarcoma virus-specific protein was also found in feline cells transformed by transfection. However, these cells also contained env gene products. The results of this study demonstrate that the feline sarcoma virus genome is sufficient to transform murine cells and that expression of the 85,000-dalton gag-x protein is associated with transformation of both murine and feline cells transformed by transfection.  相似文献   

9.
We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow the study of xenotropic murine leukemia virus in mixtures which also contain recombinant murine leukemia virus and may be helpful in eliminating feline leukemia virus type which often coexists in feline sarcoma or leukemia virus mixtures with other feline leukemia virus types.  相似文献   

10.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.  相似文献   

11.
Major virion low-molecular-weight polypeptides were isolated from the Moloney strain of murine leukemia virus (type C) by agarose chromatography in 6M guanidine hydrochloride and were shown to have molecular weights of 15,000 (p15), 12,000 (p12), and 10,000 (p10) by their elution volumes and by their relative mobilities in sodium dodecyl sulfate-polyacrylamide gels. Each polypeptide could be iodinated and employed in double antibody radioimmunoassay procedures. All three polypeptides demonstrated a high degree of type-specificity in serologic immunoprecipitation analysis and in corresponding competition immunoassays. The p15 was immunologically distinct from other viron polypeptides including p12 and p10; the p12 and p10 were highly related to each other but not to other virion polypeptides and were even more type-specific than the p15 in serologic tests. Competition immunoassays with p15 and p10 indicate that the Moloney strain of MuLV is only a distant relative of the Friend-Rauscher group. The combined use of the Kirsten and Moloney low-molecular-weight polypeptide immunoassays suggest that xenotropic viruses constitute yet another group(s) of murine leukemia virus with distinct type-specific antigens, further expanding an already heterogeneous group of mouse type C viruses.  相似文献   

12.
It was previously demonstrated that the 60,000 dalton (p60) precursor-like polyprotein containing murine p30 was a constituent of the feline leukemia virus pseudotype of Moloney sarcoma virus [m1MSV(FeLV)]. It is now shown that p60 is detected in cells of five mammalian species transformed by m1MSV, indicating that p60 is specified by this genome. Moreover, little or no murine p30 is detected in the m1MSV-transformed cells, suggesting that the murine group p30 antigenic reactivity of S + L- cells is ude to p60. Pulse-chase studies in cells producing m1MSV(FeLV) show that p60 is the largest polypeptide detectable during the pulse, and that intracellular p60 is not cleaved into smaller (for example, p30) polypeptides during chase periods of up to 10 hr. The lack of cleavage of p60 is in contrast to the properties of p30 precursors detected in cells containing replicating avian or mammalian RNA tumor viruses. The inefficient cleavage of intracellular p60 and the kinetics of appearance of murine p30 in extracellular m1MSV(FeLV) suggest that p60 cleavage to p30 occurs in cells shortly before virus release. While only p60 was detected in the m1MSV-transformed cells, p60 and p70 were detected in m3MSV-transformed cells, and no immunoprecipitable polypeptides were detected in HT-1 MSV-transformed cells. The observed differences in the intracellular polypeptide expression by each of the strains of MSV suggests differences in genetic content.  相似文献   

13.
Retroviral serologic profiles were generated for 506 random-source cats (Felis catus) that were received by our facility during a twenty-month period. Feline leukemia virus antigens were detected in plasma samples from 26 (5.1%) of the cats. Antibodies to feline immunodeficiency virus were present in 24 (4.7%) of the samples tested. A single cat (0.2%) was positive for both viruses. Neither gender nor vendor correlation with retroviral seropositivity could be demonstrated.  相似文献   

14.
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction.  相似文献   

15.
The bovine leukemia virus (BLV) was purified from a chronically infected fetal lamb kidney cell line. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of this virus revealed the presence of eight distinguishable viral components with molecular weights ranging from 80,000 to 11,000. The major component is a non-glycosylated protein having a molecular weight of 24,000 (p24). At least three heavier polypeptides were found, one of them representing a glycoprotein (gp 60). In addition, four minor polypeptides with respective molecular weights of 19,000, 16,000, 13,000, and 11,000 were identified. In a complement fixation assay using naturally occurring antibodies of a leukemic cow, four polypeptides, which included gp 60, p35, p24, and p16, were found to be reactive.  相似文献   

16.
Feline leukemia virus contains a protease which apparently has the same specificity as murine leukemia virus protease. It cleaves in vitro the Pr65gag of Gazdar-mouse sarcoma virus into the constituent p15, p12, p30, and p10 proteins. We purified the protease and determined its NH2-terminal amino acid sequence (the first 15 residues). Alignment of this amino acid sequence with the nucleotide sequence (I. Laprevotte, A. Hampe, C. H. Sherr, and F. Galibert, J. Virol. 50:884-894, 1984) reveals that the protease is a viral-coded enzyme and is located at the 5' end of the pol gene. As previously found for murine leukemia virus (Y. Yoshinaka, I. Katoh, T. D. Copeland, and S. Oroszlan, Proc. Natl. Acad. Sci. U.S.A. 82:1618-1622, 1985), feline leukemia virus protease is synthesized through in-frame suppression of the gag amber termination codon by insertion of a glutamine in the fifth position, and the first four amino acids are derived from the gag gene.  相似文献   

17.
The role of the complement system in containment of feline leukemia virus infection was studied by cobra venom factor treatment of feline leukemia virus-immune cats. One to three weeks after cobra venom factor treatment, an increase in viral antigen in marrow myelomonocytic cells and circulating immune complexes was noted. Prevention of reactivation of feline leukemia virus infection may in part depend on an intact complement system.  相似文献   

18.
The high-molecular-weight subunit RNA of feline leukemia virus (Rickard strain) (FeLV-R) was analyzed for the presence of methyl groups. After purification of native 50-60S FeLV-R RNA on nondenaturing aqueous sucrose density gradients. FeLV-R 28S subunit RNA, doubly labeled with [14C]uridine and [methyl-3H]methionine, was isolated by centrifugation through denaturing sucrose density gradients in dimethyl sulfoxide. As calculated from their respective 3H/14C ratios. FeLV-R 28S RNA was methylated to the same degree as host cell poly(A)+ mRNA. When the 28S FeLV-R RNA was hydrolyzed to completion with RNase T2 or alkali, all of the methyl-3H chromatographed with mononucleotides on Pellionex-WAX, a weak anion exchanger. The methyl-labeled material co-chromatographed with 6-methyladenosine if the mononucleotide fraction obtained by Pellionex-WAX chromatography was hydrolyzed to nucleosides by bacterial alkaline phosphatase or with 6-methyladenine if purine bases were released from the mononucleotides by acid hydrolysis. In another experiment in which FeLV-R 28S RNA uniformly labeled with 32P was hydrolyzed and then analyzed by Pellionex-WAX chromatography, all of the 32P label again co-chromatographed with mononucleotides. Thus FeLV-R 28S RNA does not appear to contain a 5' structure, either methylated or nonmethylated similar to those recently reported for cellular and some animal virus mRNA's.  相似文献   

19.
Large-scale production and concentration procedures have been standardized to study the biological properties of Rauscher leukemia virus produced from the high-passaged JLS-V9-H mouse bone marrow cell line. Virus produced early (days 4 to 6) in the harvest and refeed cycle contained higher levels of ribonucleic acid-directed deoxyribonucleic acid polymerase activity and was more infectious than Rauscher leukemia virus produced later (days 7 to 10) in the growth period. The peak of virus production as detected by physical assays (virus particle count, protein, and p30 antigen) was highest at day 6, whereas the optimum biological and ribonucleic acid-directed deoxyribonucleic acid polymerase activity occurred 24 h earlier. When product characterization values of each concentrate were adjusted to a specific activity (i.e., per milligram of protein) basis, virus particle counts averaged 4 x 10(11) through days 5 to 9, and the peak infectivity occurred at day 4, whereas ribonucleic acid-directed deoxyribonucleic acid polymerase activity was highest at day 4 (endogenous) and 5 (exogenous). Sodium dodecyl sulfate-polyacrylamide gel analysis revealed only slight differences in the polypeptide pattern of Rauscher leukemia virus harvested from cultures of varying age, although Rauscher leukemia virus produced between days 3 and 5 contained more glycoprotein than either earlier or later harvests.  相似文献   

20.
Large-scale production and concentration procedures have been standardized to study the biological properties of Rauscher leukemia virus produced from the high-passaged JLS-V9-H mouse bone marrow cell line. Virus produced early (days 4 to 6) in the harvest and refeed cycle contained higher levels of ribonucleic acid-directed deoxyribonucleic acid polymerase activity and was more infectious than Rauscher leukemia virus produced later (days 7 to 10) in the growth period. The peak of virus production as detected by physical assays (virus particle count, protein, and p30 antigen) was highest at day 6, whereas the optimum biological and ribonucleic acid-directed deoxyribonucleic acid polymerase activity occurred 24 h earlier. When product characterization values of each concentrate were adjusted to a specific activity (i.e., per milligram of protein) basis, virus particle counts averaged 4 x 10(11) through days 5 to 9, and the peak infectivity occurred at day 4, whereas ribonucleic acid-directed deoxyribonucleic acid polymerase activity was highest at day 4 (endogenous) and 5 (exogenous). Sodium dodecyl sulfate-polyacrylamide gel analysis revealed only slight differences in the polypeptide pattern of Rauscher leukemia virus harvested from cultures of varying age, although Rauscher leukemia virus produced between days 3 and 5 contained more glycoprotein than either earlier or later harvests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号