首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin tolerance was studied in young (8- to 10-week-old) Wistar rats: a) after the administration of mounting doses of long-acting insulin (10, 40, 160 and 320 units/kg bw.) to animals fed ad libitum on two different diets); b) after the administration of long-acting insulin (1 and 5 units/kg b.w.) to animals which had fasted for different lengths of time. In rats fed ad libitum on the two diets, graded doses of insulin induced (except for the smallest dose) hypoglycaemia of roughly the same intensity, but varying in duration in correlation to the dose. The administration of insulin to fasting rats showed differences in insulin tolerance which were correlated to the duration of the fast. A significant decrease in insulin tolerance was already found after 6 hours. During the given testing period (72 hours), the lowest insulin tolerance was found after a 12 hours' fast and the highest after 48 hours. Insulin tolerance after 24 and 72 hours' fasting was approximately the same; it was higher than after 12 hours, but lower than after 48 hours. The initial blood sugar level (before administering insulin) was not in any way correlated to insulin tolerance determined at various intervals during fasting.  相似文献   

2.
Diabetes mellitus is the most common and serious metabolic disorder among people all over the world. Many plants have successfully been used to overcome this problem. Cassia fistula, an ethnomedicnal plant, is widely used in Indian medicine to treat diabetes. Methanol extract of stem of plant, reduced the blood glucose levels in Streptozotocin-induced diabetic rats. Bioassay guided fractionation was followed to isolate Catechin from methanol extract. Catechin was administered to Streptozotocin (60 mg/kg b.w.)-induced diabetic male Wistar rats at different doses (5, 10, 20 mg/kg b.w.) for 6 weeks to assess its effect on fasting plasma glucose. The plasma glucose was significantly (p<0.05) reduced when compared to the control. Oral administration of Catechin (20 mg/kg b.w.) markedly increased tissue glycogen, and 14C-glucose oxidation without any change in plasma insulin and C-peptide. Catechin restored the altered Glucokinase, glucose-6 Phosphatase, Glycogen Synthase and Glycogen Phosphorylase levels to near normal. GLUT4 mRNA and protein expression were enhanced after Catechin treatment. The results of this experimental study indicated that Catechin possesses hypo-glycemic, Glucose oxidizing and insulin mimetic activities and hence it could be used as a drug for treating diabetes.  相似文献   

3.
Although the capacity of food components to cause more insulin secretion when given orally than when given intravenously is related significantly to increased plasma concentration of gastric inhibitory polypeptide (GIP), stimulated only by the oral route, questions arise as to what extent other gastrointestinal hormones modify insulin secretion either directly or by influencing the secretion of GIP. The triacontatriapeptide form of cholecystokinin (CCK33), infused in dose gradients intravenously in dogs increases insulin secretion, and comparably to equimolar doses of the carboxy-terminal octapeptide of cholecystokin (CCK8); neither compound changes fasting plasma levels of GIP or glucose. Glucagon was increased only by the largest dose of CCK8 (0.27 ug/kg). Unlike the situation with GIP, it is not necessary to increase the plasma glucose above fasting level to obtain the insulin-releasing action of CCK. When glucose is infused intravenously (2 g in 0.5 min) at the beginning of a 15-minute infusion of CCK8 (10 ng/kg/min), the amount of insulin release is greater than is produced by CCK8 or glucose alone. In the same type of experiment, the infusion of GIP, in equimolar amounts as CCK8, plus glucose causes no more insulin secretion than is stimulated by glucose alone. Secretin has only a small stimulating action on insulin release, and pancreatic polypeptide (PP) has no effect. Neither secretin nor PP affects GIP secretion, whether either is given alone, or together, or with CCK8. Either secretin or CCK8 inhibits oral glucose-stimulated increase in plasma GIP. These inhibitory effects are probably very much related to the hormone-induced decrease in gastric emptying, but changes in somatostatin secretion and other hormones possibly exert contributory actions. In conclusion, GIP in certain dose ranges has been reported to cause major increase in insulin secretion, but we showed that the insulin-releasing action of a small dose of glucose (2 g) infused intravenously was not augmented by GIP (44.5 ng/kg/min), although it was significantly increased by an equimolar dose of CCK8. When plasma glucose was maintained at a fasting level, gradient equimolar dosages of CCK8 and CCK33 had comparable insulin-releasing action; GIP had no effect.  相似文献   

4.
In present study, crude polysaccharides (TCPs) were obtained by hot water extraction and ethanol precipitation from the Taxus cuspidata. With a purpose of finding valuable and economical drug for diabetes, TCPs was administered orally at three doses [50, 100 and 200 mg/kg body weight (b.w.)] to the diabetic mice induced by streptozotocin (STZ). The body weight, fasting blood glucose (FBG), fasting serum insulin (FINS), lipid peroxidation and superoxide dismutase (SOD) activity, as well as glucose tolerance were evaluated in normal and STZ-induced diabetic mice. TCPs could dose-dependently significantly increase the body weight of diabetic mice, and reverse the decrease of SOD and the increase of thiobarbituric acid reactive substances (TBARS) in kidney and liver of diabetic mice as compared to those in control group. Meanwhile, the level of FBG markedly decreased in diabetic mice administrated with TCPs, followed by the enhancement of FINS level especially at the higher dose. Furthermore, glibenclamide and TCPs significantly suppressed the rise in blood glucose after 30 min in the acute glucose tolerance test. These results indicated that TCPs could be developed to a potential anti-diabetic drug in the future.  相似文献   

5.
Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.  相似文献   

6.
The aim of the present experiments was to study the plasma glucose-insulin relationship in eu-, hypo- or hyperthyroid broiler chickens. None of the thyroid states modified the fasting plasma glucose and insulin levels. Hypothyroid chickens exhibited a normal glucose tolerance and a normal glucose-induced insulin release after oral glucose (2 g/kg body weight) administration compared to euthyroid chickens. In contrast, hyperthyroid chickens exhibited an improved glucose tolerance accompanied by a lower insulin release. Insulin injections at a concentration of 0.1 U/kg body weight was only hypoglycemic in hyperthyroid chickens, which confirms the observation that these chickens are more sensitive to insulin. From this study it can be suggested that alterations in body composition according to thyroid status are at least partly mediated by changes in the control of carbohydrate metabolism by pancreatic hormones.  相似文献   

7.
《Phytomedicine》2014,21(5):607-614
The aim of this study was to determine whether the Rehmannia glutinosa oligosaccharides (ROS) ameliorate the impaired glucose metabolism and the potential mechanism in chronic stress rats fed with high-fat diet. The rats were fed by a high-fat diet and simultaneously stimulated by chronic stress over 5 weeks. Body weight, fasting plasma glucose, intraperitoneal glucose tolerance test (IPGTT), plasma lipids, gluconeogenesis test (GGT), glycogen content, and corticosterone, insulin and leptin levels were measured. The results showed that ROS administration (100, 200 mg/kg, i.g.) for 5 weeks exerted the effects of increasing the organ weights of thymus and spleen, lowering the fasting plasma glucose level, improving impaired glucose tolerance, increasing the contents of liver and muscle glycogen, decreasing the gluconeogenesis ability, plasma-free fatty acid's level, as well as plasma triglyceride and total cholesterol levels in chronic stress and high-fat fed rats, especially in the group of 200 mg/kg; while the plasma corticosterone level was decreased, and plasma leptin level was increased. These results suggest that ROS exert an ameliorating effect of impaired glucose metabolism in chronic stress rats fed with high-fat diet, and the potential mechanism may be mediated through rebuilding the glucose homeostasis in the neuroendocrine immuno-modulation (NIM) network through multilinks and multitargets.  相似文献   

8.
We combined in vitro and in vivo methods to investigate the effects of ghrelin, a novel gastric hormone, on insulin and glucagon release. Studies of isolated mouse islets showed that ghrelin concentrations in the physiological range (0.5-3 nmol l(-1)) had no effect on glucose-stimulated insulin release, while low ghrelin concentrations (1-100 pmol l(-1)) inhibited and high (0.1 and 1 micromol l(-1)) stimulated. The insulin response to glucose was enhanced in the presence of a high ghrelin concentration (100 nmol l(-1)). Glucagon release was stimulated by ghrelin (0.1 pmol l(-1) to 1 micromol l(-1)); this effect was maintained in the presence of glucose (0-20 mmol l(-1)). In intact mice, basal plasma insulin was suppressed by 1 and 10 nmol kg(-1) of ghrelin, 2 and 6 min after i.v. injection. Ghrelin (0.2-10 nmol kg(-1) i.v.) suppressed also the glucose-stimulated insulin response and impaired the glucose tolerance (at a ghrelin dose of 3.3 nmol kg(-1)). Ghrelin (1 or 10 nmol kg(-1) i.v.) inhibited the insulin response to the phospholipase C stimulating agent carbachol and enhanced the insulin response to the phosphodiesterase inhibitor isobutyl-methylxanthine (IBMX) but did not affect the response to the membrane-depolarizing amino acid l-arginine. These observations suggest that the inhibitory effect of ghrelin on glucose-induced insulin release is in part exerted on phospholipase C pathways (and not on Ca(2+)entry), while the stimulatory effect of high doses of ghrelin depends on cyclic AMP. In contrast to the spectacular glucagon-releasing effect of ghrelin in vitro, ghrelin did not raise plasma glucagon. Carbachol, IBMX and l-arginine stimulated glucagon release. These responses were impaired by ghrelin, suggesting that it suppresses the various intracellular pathways (phospholipase C, cyclic AMP and Ca(2+)), that are activated by the glucagon secretagogues. Together these observations highlight (but do not explain) the different effects of ghrelin on glucagon release in vitro and in vivo. The results show that ghrelin has powerful effects on islet cells, suggesting that endogenous ghrelin may contribute to the physiological control of insulin and glucagon release. However, the narrow "window" of circulating ghrelin concentrations makes this doubtful.  相似文献   

9.
Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance.  相似文献   

10.
The aim of the present study was to determine the effects of feeding various dietary proteins on insulin sensitivity and glucose tolerance in rats. Male Wistar rats were fed for 28 days with isoenergetic diets containing either casein, soy protein, or cod protein. Cod protein-fed and soy protein-fed rats had lower fasting plasma glucose and insulin concentrations compared with casein-fed animals. After intravenous glucose bolus, cod protein- and soy protein-fed rats induced lower incremental areas under glucose curves compared with casein-fed animals. Improved peripheral insulin sensitivity was confirmed by higher glucose disposal rates in cod protein- and soy protein-fed rats (15.2 +/- 0.3 and 13.9 +/- 0.6 mg. kg(-1). min(-1), respectively) compared with casein-fed animals (6.5 +/- 0.7 mg. kg(-1). min(-1), P < 0.05). Moreover, test meal experiments revealed that, in the postprandial state, the lower plasma insulin concentrations in cod protein- and soy protein-fed animals could be also due to decreased pancreatic insulin release and increased hepatic insulin removal. In conclusion, the metabolic responses to three common dietary proteins indicate that cod and soy proteins, when compared with casein, improve fasting glucose tolerance and peripheral insulin sensitivity in rats.  相似文献   

11.
To determine whether rats could adapt to a chronic exogenous supply of adrenaline by a decrease in the well-known inhibitory effect of adrenaline on insulin secretion, plasma glucose and insulin levels were measured in unanesthetized control and adrenaline-treated rats (300 mug/kg twice a day for 28 days) during an adrenaline infusion (0.75 mug kg-1 min-1), after an acute glucose load (0.5 g/kg), and during the simultaneous administration of both agents. Chronic treatment with adrenaline did not modify the initial glucose levels but it greatly diminished the basal insulin values (21.57+/-2.48 vs. 44.69+/-3.3muU/ml, p less than 0.01). In the control rats, despite the elevated glucose concentrations, a significant drop in plasma insulin levels was observed within the first 15 min of adrenaline infusion, followed by a period of recovery. In the adrenaline-treated group, in which plasma glucose levels were lower than in control animals, plasma insulin levels did not drop as in control rats, but a significant increase was found after 30 min of infusion. During the intravenous glucose tolerance test, the plasma glucose and insulin responses showed similar patterns; however, during the concomitant adrenaline infusion, the treated rats showed a better glucose tolerance than their controls. These results indicate that rats chronically treated with adrenaline adapt to the diabetogenic effect of an infusion of adrenaline by have a lower inhibition of insulin release, although the lower basal insulin levels may indicate a greater sensitivity to endogenous insulin.  相似文献   

12.
In 4 Piétrain-pigs and 4 crossbred (Duroc X Landrace) pigs (32-47 kg body weight; b.w.) the effect of an intravenous injection of epinephrine (80 micrograms/kg b.w.) or isoprenaline (55 micrograms/kg b.w.) was investigated during a continuous infusion of 0.9% NaCl-solution (1 ml/min and pig), propranolol or phentolamine (priming dose 100 micrograms/kg b.w. and thereafter 2 micrograms/kg and min over 45 min) on the plasma concentration of glucose, lactate, free fatty acids (FFS) and free over 45 min) on the plasma concentration of glucose, lactate, free fatty acids (FFS) and free glycerol. Furthermore the effect of a continuous infusion of the blocking agents alone was examined in the 4 crossbred animals. Lipolysis was stimulated via beta-adrenergic receptors and was inhibited through an alpha-adrenergic mediated effect in pigs. The lean Piétrain-pigs showed a significant higher response than the crossbred pigs. The catecholamine induced increase in plasma glucose and lactate was equal in both breeds. The rise of glucose concentration resulted from an alpha- and beta-adrenergic component, with the alpha-adrenergic effect dominating. Compared to isoprenaline, the higher increase in plasma lactate after adrenaline injection is attributed to clinical reactions.  相似文献   

13.
Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0±1.2 vs. 10.1±1.1; diabetic mice with 180 mg/kg 55P0110, 23.1±0.9 vs. 11.1±1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49±0.27; 55P0110, 2.99±0.35; gliclazide, 8.97±0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53±0.41; 55P0110, 3.80±0.46; gliclazide, 3.99±0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of fully synthetic substituted quinazolidines with an attractive pharmacological profile that recommends the structures for further evaluation as candidates for the treatment of diabetes mellitus.  相似文献   

14.
OBJECTIVE: Coffee has several metabolic effects that could reduce the risk of type 2 diabetes. Our objective was to examine the effects of coffee consumption on glucose tolerance, glucose and insulin levels. RESEARCH DESIGN AND METHODS: A subsample of subjects aged 45 to 64 years in 1987 and in 1992 from the population-based FINRISK study (12,287 individuals) was invited to receive the standard oral glucose tolerance test at baseline. Plasma samples were taken after an overnight fast, and a two-hour oral glucose tolerance test was administered. Fasting and two-hour plasma glucose and insulin were measured in 2434 subjects with data on coffee use and potential confounders. RESULTS: After adjustment for potential confounding factors (age, body mass index, systolic blood pressure, occupational, commuting and leisure time physical activity, alcohol and tea drinking, smoking), coffee consumption was significantly and inversely associated with fasting glucose, two-hour plasma glucose, and fasting insulin in both men and women. Coffee consumption was significantly and inversely associated with impaired fasting glucose, impaired glucose regulation, and hyperinsulinemia among both men and women and with isolated impaired glucose tolerance among women. CONCLUSIONS: In this cross-sectional analysis, coffee showed positive effects on several glycemia markers.  相似文献   

15.
INTRODUCTION: Basal leptin level has been demonstrated to correlate positively with many indices of obesity, as well as insulin resistance. However, to date, little is known about regulation of leptin in obese children with incipient glucose metabolic disorders. OBJECTIVE: The aim of this study was to define the precise influence of the glucose tolerance status on plasma leptin in obese boys and girls separately. MATERIAL AND METHODS: 70 obese children with impaired glucose tolerance (IGT) and well-matched 70 normal glucose-tolerant (NGT) subjects were examined. Fasting and 2-h post glucose load plasma glucose and insulin levels as well as fasting leptin levels were determined, apart from anthropometric measurements. RESULTS: Leptin levels were significantly lower in girls with IGT compared to NGT girl (17.7+/-6.5 microg/L vs. 23.1+/-7.7 microg/L; p<.001). No such difference was observed in boys. In a multiple regression analysis adjusting for age and adiposity, in the female group plasma glucose and insulin levels 2-h after glucose load were the best predictors of fasting plasma leptin (r=-0.49, p<.005 and r=0.34, p<.05; respectively). In boys, plasma insulin level 2-h after glucose load was the independent determinant of leptin (r=0.36, p<.05). CONCLUSION: The differences between regulation of leptin synthesis in girls and boys with simple obesity were found. The stimulatory effect of insulin on leptin synthesis was greater in girls with normoglycemia than in girls with impaired glucose tolerance.  相似文献   

16.
INTRODUCTION: Basal leptin level has been demonstrated to correlate positively with many indices of obesity, as well as insulin resistance. However, to date, little is known about regulation of leptin in obese children with incipient glucose metabolic disorders. OBJECTIVE: The aim of this study was to define the precise influence of the glucose tolerance status on plasma leptin in obese boys and girls separately. MATERIAL AND METHODS: 70 obese children with impaired glucose tolerance (IGT) and well-matched 70 normal glucose-tolerant (NGT) subjects were examined. Fasting and 2-h post glucose load plasma glucose and insulin levels as well as fasting leptin levels were determined, apart from anthropometric measurements. RESULTS: Leptin levels were significantly lower in girls with IGT compared to NGT girl (17.7+/-6.5 microg/L vs. 23.1+/-7.7 microg/L; p<.001). No such difference was observed in boys. In a multiple regression analysis adjusting for age and adiposity, in the female group plasma glucose and insulin levels 2-h after glucose load were the best predictors of fasting plasma leptin (r=-0.49, p<.005 and r=0.34, p<.05; respectively). In boys, plasma insulin level 2-h after glucose load was the independent determinant of leptin (r=0.36, p<.05). CONCLUSION: The differences between regulation of leptin synthesis in girls and boys with simple obesity were found. The stimulatory effect of insulin on leptin synthesis was greater in girls with normoglycemia than in girls with impaired glucose tolerance.  相似文献   

17.
The aim of this experiment was to evaluate the impact of selection for greater muscling on whole body insulin responsiveness in cattle, as reflected by greater uptake of glucose in response to constant insulin infusion and greater glucose disappearance following an intravenous glucose tolerance test. This study used 18-month-old steers from an Angus herd visually assessed and selected for divergence in muscling over 15 years. Eleven high-muscled (High), 10 low-muscled (Low) and 3 high-muscled steers, which were heterozygous for a myostatin polymorphism (HighHet), were infused with insulin using the hyperinsulineamic-euglyceamic clamp technique. Insulin was constantly infused at two levels, 0.6 μIU/kg per min and 6.0 μIU/kg per min. Glucose was concurrently infused to maintain euglyceamia and the steady state glucose infusion rate (SSGIR) indicated insulin responsiveness. An intravenous glucose tolerance test was also administered at 200 mg/kg live weight. Sixteen blood samples were collected from each animal between -30 and 130 min relative to the administration of intravenous glucose, plasma glucose and insulin concentration was determined in order to analyse insulin secretion and glucose disappearance. Insulin-like growth factor-1 (IGF-1) was also measured in basal plasma samples. At the low insulin infusion rate of 0.6 mU/kg per min, the SSGIR was 73% higher for the High muscling genotype animals when compared to the Low (P<0.05). At the high insulin infusion rate of 6.0 mU/kg per min, these differences were proportionately less with the High and the HighHet genotypes having only 27% and 34% higher SSGIR (P<0.05) than the Low-muscled genotype. The High-muscled cattle also had 30% higher plasma IGF-1 concentrations compared to the Low-muscled cattle. There was no effect of muscling genotype on basal insulin or basal glucose concentrations, glucose disappearance or insulin secretion following an intravenous glucose tolerance test. The increased whole body insulin responsiveness in combination with higher IGF-1 concentrations in the High-muscled steers is likely to initiate a greater level of protein synthesis, which may partially explain the increased muscle accretion in these animals.  相似文献   

18.
1. The effects of subcutaneous injection of cysteamine (2-mercaptoethylamine, 300 mg/kg) were investigated in 5-6 week-old chickens. 2. In the short term (1 hr), cysteamine increased plasma levels of glucose, free fatty acids and insulin, and decreased that of alpha-amino non protein nitrogen. 3. In a longer term (17-24 hr), cysteamine increased the plasma level of glucose, did not modify those of alpha-amino non protein nitrogen, insulin and glucagon and decreased that of free fatty acids. 4. The disposal of an oral glucose load was impaired and the glucose-induced inhibition of pancreatic glucagon and stimulation of insulin release were blunted 17 hr after cysteamine administration. 5. Therefore, cysteamine exerts multiple effects on chicken pancreatic islet cells.  相似文献   

19.
十两茶水提物降糖作用及机制研究   总被引:1,自引:0,他引:1  
探讨了湖南安化黑茶的主要品种十两茶水提物的降糖作用及机制.选用6~8周龄db/db自发性糖尿病模型小鼠,每日灌胃给予3个不同剂量的十两茶水提物(100、200、400 mg/kg),连续28 d.每周测定空腹血糖值,实验结束时检测糖耐量和胰岛素水平.研究结果显示,十两茶水提物400 mg/kg给药28 d就能显著降低db/db糖尿病小鼠空腹血糖和改善其对葡萄糖耐受能力.同时,十两茶水提物能显著降低db/db糖尿病小鼠血清胰岛素水平,增加葡萄糖耐量试验胰岛素的释放.结果显示十两茶水提物对2型糖尿病小鼠具有很好的降糖作用,其作用机制与增加胰岛素敏感性有关.  相似文献   

20.
Objective: To assess the effect of massive weight loss in relation to insulin resistance and its correlation to changes in glycemic homeostasis and lipid profile in severely obese patients. Research Methods and Procedures: A prospective clinical intervention study was carried out with 31 morbidly obese women (body mass index: 54.2 ± 8.8 kg/m2) divided into three groups according to their glucose tolerance test: 14 normal, 8 impaired glucose tolerance, and 9 type 2 diabetes. All subjects underwent an insulin tolerance test with intravenous bolus of 0.1 U insulin/kg body weight before silastic ring vertical gastroplasty Roux‐en‐Y gastric bypass surgery, and again at 2, 4, 6, and 12 months postoperatively. Fasting plasma glucose, hemoglobin A1c, and lipid profile were also evaluated. Results: A reduction of 68 ± 15% in initial excess body weight was evident within 1 year. Along with weight loss, the following statistically significant changes were found: an increase in the insulin‐sensitivity index (Kitt) and a decrease in fasting plasma glucose and hemoglobin A1c, most notably in the type 2 diabetes group. An overall improvement in lipid profile was observed in all three groups. Discussion: Bariatric surgery was an effective therapeutic approach for these obese patients because it reduced both weight and insulin resistance, along with improving metabolic parameters. Significant correlations were found between insulin resistance and metabolic improvements. Weight loss after bariatric surgery induced an improvement in metabolic fitness, related to the reduction in insulin resistance over a range of glucose tolerance statuses from normal to diabetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号