首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bed rest increases the amount of mismatched fibers in human skeletal muscle   总被引:6,自引:0,他引:6  
The effects of a37-day period of bed rest on myosin heavy chain (MHC) expression onboth mRNA and protein level in human skeletal muscle fibers werestudied. Muscle biopsies from vastus lateralis muscle were obtainedfrom seven healthy young male subjects before and after the bed-restperiod. Combined in situ hybridization, immunocytochemistry, and ATPasehistochemistry analysis of serial sections of the muscle biopsiesdemonstrated that fibers showing a mismatch between MHC isoforms at themRNA and protein level increased significantly after the bed-restperiod, suggesting an increase in the amount of muscle fibers in atransitional state. Accordingly, fibers showing a match in expressionof MHC-1 and of MHC-2A at the mRNA and protein level decreased, whereasfibers showing a match between MHC-2X mRNA and protein increased after bed rest. Overall, there was an increase in fibers in a transitional state from phenotypic type 1  2A and 2A  2X.Furthermore, a number of fibers with unusual MHC mRNA and isoproteincombinations were observed after bed rest (e.g., type 1 fibers withonly mRNA for 2X and type 1 fibers negative for mRNA for MHC-/slow,2A, and 2X). In contrast, no changes were revealed after an examination at the protein level alone. These data suggest that the reduced load-bearing activity imposed on the skeletal muscles through bed restwill alter MHC gene expression, resulting in combinations of mRNA andMHC isoforms normally not (or only rarely) observed in musclessubjected to load-bearing activity. On the other hand, the present dataalso show that 37 days of bed rest are not a sufficient stimulus toinduce a similar change at the protein level, as was observed at thegene level.  相似文献   

2.
The total creatine(TCr) pool of skeletal muscle is composed of creatine (Cr) andphosphocreatine (PCr). In resting skeletal muscle, the ratio ofPCr to TCr (PCr/TCr; PCr energy charge) is ~0.6-0.8, dependingon the fiber type. PCr/TCr is linked to the cellular free energy of ATPhydrolysis by the Cr kinase equilibrium. Dietary Cr supplementationincreases TCr in skeletal muscle. However, many previous studies havereported data indicating that PCr/TCr falls after supplementation,which would suggest that Cr supplementation alters the restingenergetic state of myocytes. This study investigated the effect of Crsupplementation on the energy phosphates of resting skeletal muscle.Male rats were fed either rodent chow (control) or chow supplementedwith 2% (wt/wt) Cr. After 2 wk on the diet, the gastrocnemius andsoleus muscles were freeze clamped and removed from anesthetizedanimals. Cr supplementation increased TCr, PCr, and Cr levels in thegastrocnemius by 20, 22, and 17%, respectively (P < 0.05). A numerical 6% higher mean soleus TCr in Cr-supplemented ratswas not statistically significant. All other energy phosphate concentrations, free energy of ATP hydrolysis, and PCr/TCr were notdifferent between the two groups in either muscle. We conclude that Crsupplementation simply increased TCr in fast-twitch rat skeletal musclebut did not otherwise alter resting cellular energetic state.

  相似文献   

3.
Lower limb skeletal muscle function after 6wk of bed rest   总被引:7,自引:0,他引:7  
Berg, H. E., L. Larsson, and P. A. Tesch. Lower limbskeletal muscle function after 6 wk of bed rest. J. Appl. Physiol. 82(1): 182-188, 1997.Force,electromyographic (EMG) activity, muscle mass, and fibercharacteristics were studied in seven healthy men before and after 6 wkof bed rest. Maximum voluntary isometric and concentric knee extensortorque decreased (P < 0.05)uniformly across angular velocities by 25-30% after bed rest.Maximum quadricep rectified EMG decreased by 19 ± 23%, whereassubmaximum (100-Nm isometric action) EMG increased by 44 ± 28%.Knee extensor muscle cross-sectional area (CSA), assessed by usingmagnetic resonance imaging, decreased by 14 ± 4%. Maximum torqueper knee extensor CSA decreased by 13 ± 9%. Vastus lateralis fiberCSA decreased 18 ± 14%. Neither type I, IIA, and IIB fiberpercentages nor their relative proportions of myosin heavy chain (MHC)isoforms were altered after bed rest. Because the decline in strengthcould not be entirely accounted for by decreased muscle CSA, it issuggested that the strength loss is also due to factors resulting indecreased neural input to muscle and/or reduced specifictension of muscle, as evidenced by a decreased torque/EMG ratio.Additionally, it is concluded that muscle unloading in humans does notinduce important changes in fiber type or MHC composition or in vivomuscle contractile properties.

  相似文献   

4.
Bamman, Marcas M., Mark S. F. Clarke, Daniel L. Feeback,Robert J. Talmadge, Bruce R. Stevens, Steven A. Lieberman, and MichaelC. Greenisen. Impact of resistance exercise during bed rest onskeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. 84(1): 157-163, 1998.Because resistance exercise (REx) and bed-rest unloading (BRU)are associated with opposing adaptations, our purpose was to test theefficacy of REx against the effects of 14 days of BRU on theknee-extensor muscle group. Sixteen healthy men were randomly assignedto no exercise (NoEx; n = 8) or REx(n = 8). REx performed five sets ofleg press exercise with 80-85% of one repetition maximum (1 RM)every other day during BRU. Muscle samples were removed from the vastuslateralis muscle by percutaneous needle biopsy. Myofiber distributionwas determined immunohistochemically with three monoclonal antibodiesagainst myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHCdistribution was further assessed by quantitative gel electrophoresis.Dynamic 1-RM leg press and unilateral maximum voluntary isometriccontraction (MVC) were determined. Maximal neural activation (root meansquared electromyogram) and rate of torque development (RTD) weremeasured during MVC. Reductions(P < 0.05) in type I (15%) and typeII (17%) myofiber cross-sectional areas were found in NoEx but not inREx. Electrophoresis revealed no changes in MHC isoform distribution. The percentage of type IIx myofibers decreased(P < 0.05) in REx from 9 to 2% anddid not change in NoEx. 1 RM was reduced(P < 0.05) by 9% in NoEx but wasunchanged in REx. MVC fell by 15 and 13% in NoEx and REx,respectively. The agonist-to-antagonist root mean squaredelectromyogram ratio decreased (P < 0.05) 19% in REx. RTD slowed (P < 0.05) by 54% in NoEx only. Results indicate that REx preventedBRU-induced myofiber atrophy and also maintained training-specificstrength. Unlike spaceflight, BRU did not induce shifts in myosinphenotype. The reported benefits of REx may prove useful in prescribingexercise for astronauts in microgravity.

  相似文献   

5.
Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise, and its activity can be downregulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of the PDH complex (PDHa activity) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n = 7) underwent two fat-loading trials spaced at least 2 wk apart. Subjects consumed approximately 300 g saturated (SFA) or n-6 polyunsaturated fatty acid (PUFA) fat over the course of 5 h. Following this, participants cycled at 65% of their maximum oxygen uptake for 15 min. Muscle biopsies were taken before and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 +/- 0.07 to 0.54 +/- 0.19 mM over 5 h with SFA and from 0.11 +/- 0.04 to 0.35 +/- 0.13 mM with n-6 PUFA and were significantly lower throughout the n-6 PUFA trial. PDHa activity was unchanged following fat loading but increased at the onset of exercise in the SFA trial, from 1.18 +/- 0.27 to 2.16 +/- 0.37 mmol x min(-1) x kg wet wt(-1). This effect was negated in the n-6 PUFA trial (1.04 +/- 0.20 to 1.28 +/- 0.36 mmol x min(-1) x kg wet wt(-1)). PDH kinase was unchanged in both trials, suggesting that the attenuation of PDHa activity with n-6 PUFA was a result of changes in the concentrations of intramitochondrial effectors, potentially intramitochondrial NADH or Ca(2+). Our findings suggest that attenuated PDHa activity contributes to the preferential oxidation of n-6 PUFA during moderate-intensity exercise.  相似文献   

6.
The present investigation, the first in the field, was aimed at analyzing differentially, on individual samples, the effects of 55 days of horizontal bed rest, a model for microgravity, on myosin heavy and myosin light chain isoforms distribution (by SDS) and on the proteome (by 2-D DIGE and MS) in the vastus lateralis (VL), a mixed type II/I (~50:50%) head of the quadriceps and in the calf soleus (SOL), a predominantly slow (~35:65%) twitch muscle. Two separate studies were performed on six subjects without (BR) and six with resistive vibration exercise (RVE) countermeasures, respectively. Both VL and SOL underwent in BR decrements of ~15% in cross-sectional area and of ~22% in maximal torque that were prevented by RVE. Myosin heavy chain distribution showed increased type I and decreased type IIA in BR both in VL and in SOL, the opposite with RVE. A substantial downregulation of proteins involved in aerobic metabolism characterized both in SOL and VL in BR. RVE reversed the pattern more in VL than in SOL, whereas proteins involved in anaerobic glycolysis were upregulated. Proteins from the Z-disk region and from costamers were differently dysregulated during bed rest (both BR and RVE), particularly in VL.  相似文献   

7.
Human skeletal muscle fibers seem to share most of the same interrelationships among myosin ATPase activity, myosin heavy chain (MHC) phenotype, mitochondrial enzyme activities, glycolytic enzyme activities and cross-sectional area (CSA) as found in rat, cat and other species. One difference seems to be that fast fibers with high mitochondrial content occur less frequently in humans than in the rat or cat. Recently we have reported that the type of MHC expressed and the size of the muscle fibers in humans that have spent 11 days in space change significantly. Specifically, about 8% more fibers express fast MHCs and all phenotypes atrophy in the vastus lateralis (VL) post compared to preflight. In the present paper we examine the relationships among the population of myonuclei, MHC type and CSA of single human muscle fibers before and after spaceflight. These are the first data that define the relationship among the types of MHC expressed, myonuclei number and myonuclei domain of single fibers in human muscle. We then compare these data to similar measures in the cat. In addition, the maximal torque that can be generated by the knee extensors and their fatigability before and after spaceflight are examined. These data provide some indication of the potential physiological consequences of the muscle adaptations that occur in humans in response to spaceflight.  相似文献   

8.
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.  相似文献   

9.
Soleus musclefibers from the rat display a reduction in peak power andCa2+ sensitivity after hindlimbsuspension. To examine human responses to non-weight bearing, weobtained soleus biopsies from eight adult men before and immediatelyafter 17 days of bed rest (BR). Single chemically skinned fibers weremounted between a force transducer and a servo-controlled positionmotor and activated with maximal (isotonic properties) and/orsubmaximal (Ca2+ sensitivity)levels of free Ca2+. Gelelectrophoresis indicated that all pre- and post-BR fibers expressedtype I myosin heavy chain. Post-BR fibers obtained from one subjectdisplayed increases in peak power andCa2+ sensitivity. In contrast,post-BR fibers obtained from the seven remaining subjects showed anaverage 11% reduction in peak power (P < 0.05), with each individualdisplaying a 7-27% reduction in this variable. Post-BR fibersfrom these subjects were smaller in diameter and produced 21% lessforce at the shortening velocity associated with peak power. However,the shortening velocity at peak power output was elevated 13% in thepost-BR fibers, which partially compensated for their lower force.Post-BR fibers from these same seven subjects also displayed a reducedsensitivity to free Ca2+(P < 0.05). These results indicatethat the reduced functional capacity of human lower limb extensormuscles after BR may be in part caused by alterations in thecross-bridge mechanisms of contraction.

  相似文献   

10.
The effects of 2 and 4 mo of bed rest, with or without exercise countermeasures, on the contractile properties of slow fibers in the human soleus muscle were examined. Mean fiber diameters were 8 and 36% smaller after 2 and 4 mo of bed rest, respectively, than the pre-bed rest level. Maximum tetanic force (P(o)), maximum activated force (F(max)) per cross-sectional area (CSA), and the common-logarithm value of free Ca(2+) concentration required for half-maximal activation (pCa(50)) also decreased after 2 and 4 mo of bed rest. In contrast, maximum unloaded shortening velocity (V(o)) was increased after 2 and 4 mo of bed rest. After 1 mo of recovery, fiber diameters, P(o), F(max) per CSA (P > 0.05), and pCa(50) were increased and V(o) decreased toward pre-bed rest levels. Effects of knee extension/flexion exercise by wearing an anti-G Penguin suit for 10 h daily, and the effects of loading or unloading of the plantar flexors with (Penguin-1) or without (Penguin-2) placing the elastic loading elements of the suit, respectively, were investigated during ~2 mo of bed rest. In the Penguin-1 group, mean fiber diameter, P(o), F(max) per CSA, V(o), and pCa(50) were similar before and after bed rest. However, the responses of fiber size and contractile properties to bed rest were not prevented in the Penguin-2 group, although the degree of the changes was less than those induced by bed rest without any countermeasure. These results indicate that long-term bed rest results in reductions of fiber size, force-generation capacity, and Ca(2+) sensitivity, and enhancement of shortening velocity in slow fibers of the soleus. The data indicate that continuous mechanical loading on muscle, such as stretching of muscle, is an effective countermeasure for the prevention of muscular adaptations to gravitational unloading.  相似文献   

11.
We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.  相似文献   

12.
Using ultrasound, muscle thickness and fascicle angles from aponeurosis were evaluated before, during and after 20 days bed rest (BR). Subjects were healthy adults (4 women and 4 men). Measurements were carried out before and after BR and after 10 weeks of recovery, respectively. Muscle measurements were taken at nine sites in trunk and upper and lower extremities, respectively. For the m. triceps brachii, m. vastus lateralis, and m. gastrocnemius medialis, fascicle angles from the aponeurosis as well as muscle thickness were measured. There was a high statistical significant correlation between muscle thickness and cross-sectional area for quadriceps muscles, suggesting applicability of muscle thickness for evaluation of muscle size. Muscle thickness decreased in muscles of the lower extremity by 2.1-4.4 % after bed rest. In triceps brachii and vastus lateralis muscles, there were no prominent changes in muscle thickness and fascicle angles. It was concluded that muscle morphology deteriorates with changes in muscle architecture by bed rest but the response is small and muscle-specific. It was also suggested that bed rest affects not only muscle mass but muscle tone as well.  相似文献   

13.
14.
Reactive oxygen species, such as hydrogen peroxide (H(2)O(2)), exert a critical regulatory role on skeletal muscle function. Whether acute increases in H(2)O(2) modulate muscle microvascular O(2) delivery-utilization (Qo(2)/Vo(2)) matching [i.e., microvascular partial pressure of O(2) (Pmv(O(2)))] at rest and following the onset of contractions is unknown. The hypothesis was tested that H(2)O(2) treatment (exogenous H(2)O(2)) would enhance Pmv(O(2)) and slow Pmv(O(2)) kinetics during contractions compared with control. Anesthetized, healthy young Sprague-Dawley rats had their spinotrapezius muscles either exposed for measurement of blood flow (and therefore QO(2)), VO(2), and Pmv(O(2)), or exteriorized for measurement of force production. Electrically stimulated twitch contractions (1 Hz, ~7 V, 2-ms pulse duration, 3 min) were evoked following acute superfusion with Krebs-Henseleit (control) and H(2)O(2) (100 μM). Relative to control, H(2)O(2) treatment elicited disproportionate increases in QO(2) and VO(2) that elevated Pmv(O(2)) at rest and throughout contractions and slowed overall Pmv(O(2)) kinetics (i.e., ~85% slower mean response time; P < 0.05). Accordingly, H(2)O(2) resulted in ~33% greater overall Pmv(O(2)), as assessed by the area under the Pmv(O(2)) curve (P < 0.05). Muscle force production was not altered with H(2)O(2) treatment (P > 0.05), evidencing reduced economy during contractions (~40% decrease in the force/VO(2) relationship; P < 0.05). These findings indicate that, although increasing the driving force for blood-myocyte O(2) flux (i.e., Pmv(O(2))), transient elevations in H(2)O(2) impair skeletal muscle function (i.e., reduced economy during contractions), which mechanistically may underlie, in part, the reduced exercise tolerance in conditions associated with oxidative stress.  相似文献   

15.
16.
Selenium in human nutrition: dietary intakes and effects of supplementation   总被引:2,自引:0,他引:2  
The dietary selenium intakes of a young couple residing in Southern California were determined to be 107 and 99 micrograms/day for the husband and the wife, respectively, on the basis of a 30 day study. For other young adult Californians, the selenium intakes were estimated from 90 to 168 micrograms/day. The highest intakes were observed in individuals subsisting on diets rich in whole wheat grain cereal products and seafoods. The selenium concentrations in whole blood of the subjects under study correlated with the dietary selenium intakes directly (P less than 0.001). The administration of 150 micrograms of selenium/day in the form of commercially available supplements increases the blood selenium concentrations. After 3 weeks of supplementation, the selenium concentrations in whole blood of our subjects reached 0.21 micrograms/ml. Prolonged supplementation at higher Se dosage levels causes further increases of the blood concentrations: Two individuals who had been ingesting 350 and 600 micrograms/day for 18 months exhibited blood selenium levels of 0.35 and 0.62 micrograms/ml. The blood selenium concentration of all subjects declined slowly after cessation of supplementation. Selenium uptake from the supplements was not affected by the joint administration of zinc supplements at 15 mg zinc/day. Glutathione peroxidase blood levels did not correlate with blood Se concentrations.  相似文献   

17.
Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle.  相似文献   

18.
Adiponectin (Ad) is linked to various disease states and mediates antidiabetic and anti-inflammatory effects. While it was originally thought that Ad expression was limited to adipocytes, we demonstrate here that Ad is expressed in mouse skeletal muscles and within differentiated L6 myotubes, as assessed by RT-PCR, Western blot, and immunohistochemical analyses. Serial muscle sections stained for fiber type, lipid content, and Ad revealed that muscle fibers with elevated intramyocellular Ad expression were consistently type IIA and IID fibers with detectably higher intramyocellular lipid (IMCL) content. To determine the effect of Ad on muscle phenotype and function, we used an Ad-null [knockout (KO)] mouse model. Body mass increased significantly in 24-wk-old KO mice [+5.5 +/- 3% relative to wild-type mice (WT)], with no change in muscle mass observed. IMCL content was significantly increased (+75.1 +/- 25%), whereas epididymal fat mass, although elevated, was not different in the KO mice compared with WT (+35.1 +/- 23%; P = 0.16). Fiber-type composition was unaltered, although type IIB fiber area was increased in KO mice (+25.5 +/- 6%). In situ muscle stimulation revealed lower peak tetanic forces in KO mice relative to WT (-47.5 +/- 6%), with no change in low-frequency fatigue rates. These data demonstrate that the absence of Ad expression causes contractile dysfunction and phenotypical changes in skeletal muscle. Furthermore, we demonstrate that Ad is expressed in skeletal muscle and that its intramyocellular localization is associated with elevated IMCL, particularly in type IIA/D fibers.  相似文献   

19.
The purpose of this study was to examine the effect of prolongedbed rest (BR) on the peak isometric force(Po) and unloaded shorteningvelocity (Vo)of single Ca2+-activated musclefibers. Soleus muscle biopsies were obtained from eight adult malesbefore and after 17 days of 6° head-down BR. Chemicallypermeabilized single fiber segments were mounted between a forcetransducer and position motor, activated with saturating levels ofCa2+, and subjected to slacklength steps. Vowas determined by plotting the time for force redevelopment vs. theslack step distance. Gel electrophoresis revealed that 96% of the pre-and 87% of the post-BR fibers studied expressed only the slow type Imyosin heavy chain isoform. Fibers with diameter >100 µm made uponly 14% of this post-BR type I population compared with 33% of thepre-BR type I population. Consequently, the post-BR type I fibers(n = 147) were, on average, 5%smaller in diameter than the pre-BR type I fibers(n = 218) and produced 13% lessabsolute Po. BR had no overalleffect on Po per fibercross-sectional area(Po/CSA), even though halfof the subjects displayed a decline of 9-12% inPo/CSA after BR. Type Ifiber Voincreased by an average of 34% with BR. Although the ratio of myosinlight chain 3 to myosin light chain 2 also rose with BR, there was nocorrelation between this ratio andVo for either thepre- or post-BR fibers. In separate fibers obtained from the originalbiopsies, quantitative electron microscopy revealed a 20-24%decrease in thin filament density, with no change in thick filamentdensity. These results raise the possibility that alterations in thegeometric relationships between thin and thick filaments may be atleast partially responsible for the elevatedVo of the post-BRtype I fibers.

  相似文献   

20.
In this paper we describe a significant reduction of nuclear DNA content in skeletal muscle fibers after denervation. Some properties of an endogenous DNAase activity in normal and denervated muscle are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号