首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of rifamycin SV on metabolic performance and cell viability was studied using isolated hepatocytes from fed, starved and glutathione (GSH) depleted rats. The relationships between GSH depletion, nutritional status of the cells, glucose metabolism, lactate dehydrogenase (LDH) leakage and malondialdehyde (MDA) production in the presence of rifamycin SV and transition metal ions was investigated. Glucose metabolism was impaired in isolated hepatocytes from both fed and starved animals, the effect is dependent on the rifamycin SV concentration and is enhanced by copper (II). Oxygen consumption by isolated hepatocytes from starved rats was also increased by copper (II) and a partial inhibition due to catalase was observed. Cellular GSH levels which decrease with increasing the rifamycin SV concentration were almost depleted in the presence of copper (II). A correlation between GSH depletion and LDH leakage was observed in fed and starved cells. Catalase induced a slight inhibition of the impairment of gluconeogenesis, GSH depletion and LDH leakage in starved hepatocytes incubated with rifamycin SV, iron (II) and copper (II) salts. Lipid peroxidation measured as MDA production by isolated hepatocytes was also augmented by rifamycin SV and copper (II), especially in hepatic cells isolated from starved and GSH depleted rats. Higher cytotoxicity was observed in isolated hepatocytes from fasted animals when compared with fed or GSH depleted animals. It seems likely that in addition to GSH level, there are other factors which may have an influence on the susceptibility of hepatic cells towards xenobiotic induced cytotoxicity.  相似文献   

2.
Formation of 8-hydroxyguanine within calf thymus DNA has been studied after exposure to uv-H2O2 as a hydroxyl free radical generating system. Using high-pressure liquid chromatography with electrochemical detection, we measured the amount of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the enzymatically digested DNA. The 8-OHdG content of uv-exposed DNA increased linearly with increasing H2O2 levels up to 0.03%, above which the rate of increase was less than linear. All hydroxyl free radical scavengers studied (mannitol, ethanol, thiourea, and salicylate), if present in the system when DNA was exposed to uv-H2O2, caused a decrease in the amount of 8-OHdG formed. Thiourea when incubated with damaged DNA caused a loss of 8-OHdG when it was an integral part of DNA. In contrast, thiourea did not react with the nucleoside free in solution. Reduced glutathione did not cause a decrease of 8-OHdG, either when it was an integral part of DNA, or, as the free nucleoside in solution.  相似文献   

3.
4.
A series of neurotoxic tetrahydroisoquinoline alkaloids has been detected in certain regions of mammalian brains. One such dopaminergic tetrahydroisoquinoline neurotoxin is salsolinol (SAL), which is suspected of being associated with the etiology of Parkinson’s disease and neuropathology of chronic alcoholism. In the present study, we found that SAL in combination with Cu(II) induced strand scission in pBR322 and φX174 supercoiled DNA, which was inhibited by the copper chelator, reactive oxygen species (ROS) scavengers, reduced glutathione, and catalase. SAL in the presence of Cu(II) caused hydroxylation of salicylic acid to produce 2,3- and 2,5-dihydroxybenzoic acids. Reaction of calf thymus DNA with SAL plus Cu(II) resulted in substantial oxidative DNA damage as determined by 8-hydroxydeoxyguanosine (8-OH-dG) formation. Blockade of the dihydroxy functional group of SAL abolished its capability to yield 8-OH-dG in the presence of Cu(II). The dehydro analog of SAL, 1-methyl-6,7-dihydroxy-3,4-dihydroisoquinoline, produced significantly high levels of 8-OH-dG when incubated with calf thymus DNA, even in the absence of Cu(II), which appears to be attributable to the tautomer formation by this compound. In another experiment, SAL exerted cytotoxicity when treated to rat pheochromocytoma (PC12) cells. Based on these findings, it seems likely that SAL undergoes redox cycling in the presence of Cu(II) with concomitant production of ROS, particularly hydroxyl radical, which could contribute to DNA damaging and cytotoxic properties of this neurotoxin.  相似文献   

5.
Platinum(IV) [Pt(IV)] complex, satraplatin, is currently in clinical trials for the treatment of various cancers. As a key step of the anti-cancer effect exertion, satraplatin is supposed to be reduced by endogenous reductants to platinum(II) [Pt(II)] complex. In this study, we investigated the interaction of DNA, Pt(IV), and the endogenous reductants such as ascorbic acid (AsA) and glutathione (GSH). As a model Pt(IV) compound, cis-diammine-tetrachloro-Pt(IV) [cis-Pt(IV)], which is a prodrug of cisplatin [cis-diammine-dichloro-Pt(II), cis-Pt(II)], was incubated with calf thymus DNA in the presence of AsA or GSH. In the presence of AsA, cis-Pt(IV) induced oxidative DNA damage. Hydroxyl radical scavengers suppressed the AsA-associated oxidative damage, thereby suggesting that hydroxyl radicals are involved in the DNA oxidation. cis-Pt(II)-like CD spectral change and crosslink formation in calf thymus DNA were also observed during this DNA oxidation, suggesting cis-Pt(IV) reduction by AsA and DNA conformational change induced by the newly formed cis-Pt(II) binding to DNA. GSH did not induce oxidative DNA damage likely due to its own hydroxyl radical scavenging ability. Further, GSH suppressed the Pt(II)-mediated DNA conformational change and crosslink formation, suggesting that GSH sequesters the cis-Pt(II) away from DNA by GSH-cis-Pt(II) complex formation.  相似文献   

6.
Morin is a potential inhibitor of amyloid β-peptide aggregation. This aggregation is involved in the pathogenesis of Alzheimer’s disease. Meanwhile, morin has been found to be mutagenic and exhibits peroxidation of membrane lipids concurrent with DNA strand breaks in the presence of metal ions. To clarify a molecular mechanism of morin-induced DNA damage, we examined the DNA damage and its site specificity on 32P-5′-end-labeled human DNA fragments treated with morin plus Cu(II). The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, was also determined in calf thymus DNA treated with morin plus Cu(II). Morin-induced DNA strand breaks and base modification in the presence of Cu(II) were dose dependent. Morin plus Cu(II) caused piperidine-labile lesions preferentially at thymine and guanine residues. The DNA damage was inhibited by methional, catalase and Cu(I)-chelator bathocuproine. The typical ?OH scavengers ethanol, mannitol and sodium formate showed no inhibitory effect on DNA damage induced by morin plus Cu(II). When superoxide dismutase was added to the solution, DNA damage was not inhibited. In addition, morin plus Cu(II) increased 8-oxodG formation in calf thymus DNA fragments. We conclude that morin undergoes autoxidation in the presence of Cu(II) via a Cu(I)/Cu(II) redox cycle and H2O2 generation to produce Cu(I)-hydroperoxide, which causes oxidative DNA damage.  相似文献   

7.
The influence of magnesium(II) and copper(II) ions on the binding of ciprofloxacin to double stranded calf thymus DNA was studied by fluorescence emission spectroscopy, ultraviolet- and circular dichroism (CD) spectroscopy. The interaction of ciprofloxacin and copper(II) ions was followed by strong fluorescence quenching which was almost unaffected by the presence of DNA. On the other hand, only a slight decrease in fluorescence emission intensity, which was enhanced in the presence of DNA, was observed for ciprofloxacin interaction with magnesium(II) ions. Furthermore, magnesium(II) ions increase the thermal stability of the DNA, while, in the presence of ciprofloxacin, the degree of stabilisation is smaller. In contrast, copper(II) ions destabilise double helical DNA to heat, while ciprofloxacin slightly affects only the second transition of the biphasic melting curve of calf thymus DNA. Magnesium(II) ions at 25 degrees C induce conformational transitions of DNA at concentrations of 1.5 mM and 2.5 M, as monitored by CD. On the other hand copper(II) ions induce only one conformational transition, at a concentration of 12.7 microM. At higher concentrations of copper(II) ions (c>700 microM) DNA starts to precipitate. Significant changes in the CD spectra of DNA were observed after addition of ciprofloxacin to a solution containing DNA and copper(II) ions, but not to DNA and magnesium(II) ions. Based on our spectroscopic results, we propose that copper(II) ions are not directly involved into ciprofloxacin binding to DNA via phosphate groups as it has been suggested for magnesium(II) ions.  相似文献   

8.
Ascorbate reversibly inhibits catalase, and this inhibition is enhanced and rendered irreversible by the prior addition of copper(II)-bishistidine. In the absence of copper, the inhibition was prevented and reversed by ethanol, but not by superoxide dismutase, benzoate, mannitol, thiourea, desferrioxamine, or DETAPAC. In the presence of the copper complex mannitol, benzoate, and superoxide dismutase still had no effect, but thiourea, desferrioxamine, DETAPAC, or additional histidine decreased the extent of inactivation to that seen in the absence of copper. In the presence of copper, ethanol protected at [ascorbate] less than 1 mM, but was ineffective at [ascorbate] greater than 2 mM, even in the absence of oxygen. Although in the absence of copper, complete removal of oxygen provided full protection against inactivation by ascorbate, this protection was not seen if the catalase was briefly preincubated with H2O2 prior to flushing with nitrogen, or if copper was present. In fact, if copper was present, inactivation was enhanced by the removal of oxygen. Increasing the concentration of oxygen from ambient to 100% slowed the inactivation, whether or not copper was present. It is concluded that the initial reversible inactivation involves reaction with H2O2 to form compound I, followed by one electron reduction of compound I to compound II. In the presence of added copper, the initial (reversible) inactivation allows H2O2 to accumulate sufficiently to permit irreversible inactivation. Since in the presence of copper oxygen is not required, and neither the reversible nor the irreversible inactivation was prevented by conventional scavengers of active forms of oxygen, the inactivation is likely mediated by semidehydroascorbate, and/or it may involve site-specific generation of the damaging intermediates.  相似文献   

9.
The number of strand breaks induced by the combination of chromate and glutathione (GSH) in PM2 DNA was effectively reduced upon addition of the hydroxyl radical scavengers dimethyl sulphoxide (DMSO), formate and benzoate. Administration of catalase also led to a depression of DNA degradation whereas superoxide dismutase (SOD) had very little influence. Essentially the same results were obtained in experiments employing a chromium(V) complex Na4(GSH)4Cr.8H20, which is an intermediate chromium species isolated from the reduction of chromate by glutathione. DNA cleavage was dependent on the presence of iron (FeCl3). When compared with the number of breaks produced by FeCl3 and GSH alone, chromate stimulated the generation of single-strand breaks. These findings suggest that hydroxyl radicals are one ultimate DNA cleaving agent in both reactions. A reaction scheme for the production of hydroxyl radicals is proposed.  相似文献   

10.
Pure wheat germ RNA polymerase II but not calf thymus RNA polymerase II forms relatively stable binary complexes (half life time of 30 minutes at 0°C) with superhelical SV 40 DNA. On the contrary, the addition of a specific dinucleotide and a single ribotriphosphate permits the formation of highly stable complexes between both enzymes and SV 40 DNA. The elongation of RNA chains with preinitiated wheat germ enzyme only is stimulated by sarkosyl. These observations suggest that the wheat germ enzyme, as compared to that isolated from calf thymus, may contain a protein factor, a more native structure or both that permit efficient initiation and elongation of RNA chains on double stranded DNA.  相似文献   

11.
12.
Exposure to either ionizing radiation or certain transition metals results in generation of reactive oxygen species that induce DNA damage, mutation, and cancer. Vitamin C (a reactive oxygen scavenger) is considered to be a dietary radioprotective agent. However, it has been reported to be genotoxic in the presence of certain transition metals, including copper. In order to explore the capacity of vitamin C to protect DNA from radiation-induced damage, and the influence of the presence of copper on this protection, we investigated vitamin C-mediated protection against radiation-induced damage to calf thymus DNA in vitro in the presence or absence of copper(II). Vitamin C (0.08-8.00 mM, pH 7.0) significantly reduced DNA damage induced by gamma-irradiation (30-150 Gy) by 30-50%, similar to the protective effect of glutathione. However, vitamin C plus copper (50 microM) significantly enhanced gamma-radiation-induced DNA damage. Low levels of added copper (5 microM), or chelation of copper with 1-N-benzyltriethylenetetraine tetrahydrochloride (BzTrien) and bathocuprinedisulfonic acid (BCSA), abolished the enhanced damage without diminishing the protective effect of vitamin C. These results indicate that vitamin C can act as: (1) an antioxidant to protect DNA damage from ionizing radiation; and (2) a reducing agent in the presence of copper to induce DNA damage. These effects are important in assessing the role of vitamin C, in the presence of mineral supplements or radioprotective therapeutic agents, particularly in patients with abnormally high tissue copper levels.  相似文献   

13.
UV irradiation of simian virus 40 (SV40)-transformed human and hamster cells induced them both to express a mutator phenotype and to produce SV40. The mutator could also be activated indirectly by transfecting unirradiated cells with UV-damaged calf thymus DNA. In contrast, UV-damaged exogenous DNA failed to rescue SV40 from unirradiated transformed cells. These results suggest that the expression of transforming viruses and of cellular mutator functions is regulated by at least partially independent mechanisms. Unlike the activation of a cellular mutator phenotype, the rescue of SV40 from virus-transformed mammalian cells by UV light might require that the integrated viral DNA and/or specific cellular sequences are directly damaged.  相似文献   

14.
Derivative denaturation profiles of calf thymus DNA in the presence of copper(II) ions have been directly obtained from high resolution thermal denaturation profiles recorded in an isoabsorbance wavelength of the AT and GC hyperchromic spectra. The analysis of the very sensitive profiles provides further evidence that the melting temperature (Tm) of DNA decreases in the presence of stoichiometric ratio of copper(II) ions to nucleotide. Also, evidence is given of peculiar behaviour at higher temperatures where a new melting transition is observed. This phenomenon could be in line with the presence of bridging of DNA single strands by copper ions which are disrupted when the temperature is raised.  相似文献   

15.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

16.
The biotransformation of butylated hydroxyanisole (BHA), a possible carcinogenic food antioxidant, includes o-demethylation to 2-tert-butyl(1,4)hydroquinone (TBHQ) which can subsequently be oxidized to 2-tert-butyl(1,4)paraquinone (TBQ). In this study, we have examined the capacity of Cu, a nuclei- and DNA-associated transition metal, to mediate the oxidation of TBHQ. In phosphate buffered saline (PBS), autooxidation of TBHQ to TBQ was not detectable, while Cu(II) at micromolar concentrations strongly catalyzed the oxidation of TBHQ to TBQ. Oxidation of TBHQ by Cu(II) was accompanied by the utilization of O(2) and the concomitant generation of H(2)O(2). Using electron spin resonance spectroscopy, it was observed that Cu(II) mediated the one electron oxidation of TBHQ to a semiquinone anion radical. The formation of a semiquinone anion radical, the utilization of O(2) and the generation of H(2)O(2) and TBQ could be completely blocked by bathocuproinedisulfonic acid (BCS) and reduced glutathione (GSH), two Cu(I)-chelators. 4-Pyridyl-1-oxide-N-tert-butylnitrone (POBN)-spin trapping experiments showed that the reaction of TBHQ with Cu(II) resulted in the generation of POBN-CH(3) and POBN-CH(OH)CH(3) adducts in the presence of dimethyl sulfoxide (DMSO) and ethanol, respectively, suggesting the formation of hydroxyl radical or a similar reactive intermediate. The formation of POBN-CH(3) adduct from the TBHQ/Cu(II)+DMSO could be completely inhibited by catalase, GSH or BCS, indicating that the hydroxyl radical or its equivalent is generated from the interaction of H(2)O(2) with Cu(I). Incubation of supercoiled phiX-174 plasmid DNA with the TBHQ/Cu(II) resulted in extensive DNA strand breaks, which could be prevented by catalase or BCS. Incubation of rat hepatocytes with TBHQ in PBS led to increased formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in nuclear DNA. The TBHQ-induced formation of 8-OHdG was markedly reduced in the presence of cell permeable Cu(I)-specific chelator, bathocuproine or neocuproine, suggesting that a Cu(II)/Cu(I) redox mechanism may also be involved in the induction of oxidative DNA damage by TBHQ in hepatocytes. Taken together, the above results conclusively demonstrate that the activation of TBHQ by Cu(II) results in the formation of TBQ, semiquinone anion radical and reactive oxygen species (ROS), and that the ROS formed may participate in oxidative DNA damage in both isolated DNA and intact cells. These reactions may contribute to the carcinogenicity as well as other biochemical activities observed with BHA in animals. To our knowledge this study provides the first evidence that endogenous cellular Cu may be capable of bioactivating TBHQ, leading to oxidative DNA damage in cultured cells.  相似文献   

17.
The oxidative DNA damage by copper (II) complexes in the presence of chlorogenic acid was explored using agarose gel electrophoresis. The extent of pBR322 DNA damage was enhanced significantly with increasing concentration of [Cu-phen-Thr] complex and incubation time. A fluorescence quenching activity of calf thymus DNA–EB was observed more remarkably with chlorogenic acid than without chlorogenic acid. The fluorescence measurements suggested that [Cu-phen-Thr] complex not only can bind to DNA by intercalation but also can damage the double strand DNA in the presence of chlorogenic acid. Further, 8-hydroxy-2′-deoxyguanosine, a biomarker of DNA oxidative damage was determined by electrochemical method. The control experiments revealed that the structure of copper (II) complexes affected capability of complex to DNA damage. The planar structure copper (II) complex showed high efficiency to DNA damage. The chlorogenic acid as biological reductant could improve copper (II) complex to DNA damage. A mechanism on [Cu-phen-Thr] complex to DNA damage in the presence of chlorogenic acid was proposed.  相似文献   

18.
We have previously reported that isomeric Zn(II) N-methylpyridylporphyrins (ZnTM-2(3,4)-PyP4 + ) can act as photosensitizers with efficacy comparable to that of hematoporphyrin derivative (HpD) in preventing cell proliferation and causing cell death in vitro. To better understand the biochemical basis of this activity, the effects of photo-activated ZnTM-3-PyP4 +  on GSH/GSSG ratio, lipid peroxidation, membrane permeability, oxidative DNA damage, and the activities of SOD, catalase, glutathione reductase, and glutathione peroxidase were evaluated. Light exposure of ZnTM-3-PyP4 + -treated colon adenocarcinoma cells caused a wide spectrum of oxidative damage including depletion of GSH, inactivation of glutathione reductase and glutathione peroxidase, oxidative DNA damage and peroxidation of membrane lipids. Cell staining with Hoechst-33342 showed morphological changes consistent with both necrotic and apoptotic death sequences, depending upon the presence of oxygen.  相似文献   

19.
DNA strand breaks can be detected with great sensitivity by exposing calf thymus DNA to alkaline solutions and monitoring the rate of strand unwinding. Fluorometric analysis of DNA unwinding (FADU) is a reliable method for detecting single-strand DNA breaks as an index of DNA damage induced by photosensitizer.m-Chloroperbenzoic acid (CPBA) was used as a photosensitizer in the photodamage of calf thymus DNA. When DNA is exposed to ionizing radiation, the radicals produced in the irradiated sample modify the base-pair regions of the double strands. The protective action of copper salt, Schiff base [ethylene diamine with ethyl acetate](L) and its Cu(II) complex (Cu(7) L Cl(14)) against DNA damage photoinduced by CPBA was studied using ethidium bromide as a fluorescent probe. Treatment of DNA with 5, 10, 50, 100, or 200 microM CPBA produced 75%, 48%, 38%, 32% and 30% double-stranded DNA remaining, respectively after 30 min of alkaline treatment at 15 degrees C. Treatment of calf thymus DNA irradiated with CPBA with a dose of 1 mM [Cu(7) L Cl(14)] produced 96% double-stranded remaining protection under the same conditions compared with irradiated DNA without addition of Cu(II) complex of Schiff base.  相似文献   

20.
We report the synthesis of new photonuclease 4 consisting of two acridine rings joined by a pyridine-based copper binding linker. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of copper(II) (419 nm, 22 degrees C, pH 7.0). Viscometric data indicate that 4 binds to DNA by monofunctional intercalation, and equilibrium dialysis provides an estimated binding constant of 1.13 x 105 M-1 for its association with calf thymus DNA. In competition dialysis experiments, 4 exhibits preferential binding to GC-rich DNA sequences. When Cu(II) is added at a ligand to metal ratio of 1:1, electrospray ionization mass spectrometry demonstrates that compound 4 undergoes complex formation, while thermal melting studies show a 10 degrees C increase in the Tm of calf thymus DNA. Groove binding and intercalation are suggested by viscometric data. Finally, colorimetric and scavenger experiments indicate that the generation of Cu(I), H2O2, and superoxide contributes to the production of DNA frank strand breaks by the Cu(II) complex of 4. Whereas the strand breaks are distributed in a relatively uniform fashion over the four DNA bases, subsequent piperidine treatment of the photolysis reactions shows that alkaline labile lesions occur predominantly at guanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号