首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

2.
Mycetoma is a neglected tropical chronic granulomatous inflammatory disease of the skin and subcutaneous tissues. More than 70 species with a broad taxonomic diversity have been implicated as agents of mycetoma. Understanding the full range of causative organisms and their antibiotic sensitivity profiles are essential for the appropriate treatment of infections. The present study focuses on the analysis of full genome sequences and antibiotic inhibitory concentration profiles of actinomycetoma strains from patients seen at the Mycetoma Research Centre in Sudan with a view to developing rapid diagnostic tests. Seventeen pathogenic isolates obtained by surgical biopsies were sequenced using MinION and Illumina methods, and their antibiotic inhibitory concentration profiles determined. The results highlight an unexpected diversity of actinomycetoma causing pathogens, including three Streptomyces isolates assigned to species not previously associated with human actinomycetoma and one new Streptomyces species. Thus, current approaches for clinical and histopathological classification of mycetoma may need to be updated. The standard treatment for actinomycetoma is a combination of sulfamethoxazole/trimethoprim and amoxicillin/clavulanic acid. Most tested isolates had a high IC (inhibitory concentration) to sulfamethoxazole/trimethoprim or to amoxicillin alone. However, the addition of the β-lactamase inhibitor clavulanic acid to amoxicillin increased susceptibility, particularly for Streptomyces somaliensis and Streptomyces sudanensis. Actinomadura madurae isolates appear to have a particularly high IC under laboratory conditions, suggesting that alternative agents, such as amikacin, could be considered for more effective treatment. The results obtained will inform future diagnostic methods for the identification of actinomycetoma and treatment.  相似文献   

3.
The Gulf of California is a coastal marine ecosystem characterized as having abundant biological resources and a high level of endemism. In this work we report the isolation and characterization of Actinobacteria from different sites in the western Gulf of California. We collected 126 sediment samples and isolated on average 3.1–38.3 Actinobacterial strains from each sample. Phylogenetic analysis of 136 strains identified them as members of the genera Actinomadura, Micromonospora, Nocardiopsis, Nonomuraea, Saccharomonospora, Salinispora, Streptomyces and Verrucosispora. These strains were grouped into 26–56 operational taxonomic units (OTUs) based on 16S rRNA gene sequence identities of 98–100 %. At 98 % sequence identity, three OTUs appear to represent new taxa while nine (35 %) have only been reported from marine environments. Sixty-three strains required seawater for growth. These fell into two OTUs at the 98 % identity level and include one that failed to produce aerial hyphae and was only distantly related (≤95.5 % 16S identity) to any previously cultured Streptomyces sp. Phylogenetic analyses of ketosynthase domains associated with polyketide synthase genes revealed sequences that ranged from 55 to 99 % nucleotide identity to experimentally characterized biosynthetic pathways suggesting that some may be associated with the production of new secondary metabolites. These results indicate that marine sediments from the Gulf of California harbor diverse Actinobacterial taxa with the potential to produce new secondary metabolites.  相似文献   

4.
The taxonomic positions of soil isolates known as Streptomyces groups A, B and C were clarified. Comparative 16S rDNA sequence studies indicated that representatives of all three taxa formed distinct phyletic lines within the Streptomyces tree though the group A strains were shown to be related to Streptomyces griseus and associated validly described species. The taxonomic integrity of all three groups was highlighted by DNA:DNA relatedness and ribotype data though the group A strains encompassed a higher degree of genetic variation than the group B and C strains. In light of these and earlier phenotypic data it is proposed that Streptomyces groups A, B and C be given species status as Streptomyces sanglieri sp. nov., Streptomyces aureus sp. nov. and Streptomyces laceyi sp. nov., respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.

A total of 37 actinobacteria were isolated from eighteen lichen samples collected in Thailand. Based on the 16S rRNA gene sequences, they were identified into five genera including Actinoplanes (1 strain), Actinomadura (1 strain), Pseudosporangium (1 strain), Wangella (1 strain) and Streptomyces (33 strains). Among these isolates, strain Ptm05T, Ptm01 and Ptm12 showed low 16S rRNA gene similarity and was selected for the further taxonomic study using the polyphasic approach. These strains showed the highest 16S rRNA gene sequence similarity with Streptomyces sparsogenes ATCC 25498T (97.44–97.72%). Strain Ptm05T was selected for the type strain. The chemical cell composition of the strain was similar to the members of Streptomyces genus. LL-diaminopimelic acids were detected in the peptidoglycan. Menaquinones were MK-9(H8) and MK-9(H6). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified phospholipid, one unidentified glycolipid and one unidentified lipid were detected as the polar lipids. The predominant cellular fatty acids are anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0 and C16:0. The dDNA-DNA hybridization values among strain Ptm05T and its closely related Streptomyces type strains were 17.2–18.0%. In addition, the ANIb and ANIm between strain Ptm05T and related Streptomyces type strains were ranged from 75.69 to 76.13% and 85.21 to 85.35%, respectively. Based on phenotypic and genomic evidence, strain Ptm05T (=?TBRC 14546T?=?NBRC 115203T) represents the novel species of the genus Streptomyces for which the name Streptomyces parmotrematis sp. nov. is proposed. This study showed that the lichens are the promising source of the novel actinobacterial taxa.

  相似文献   

6.
Actinomycetes are one of the main microbial groups that produce bioactive compounds used as antibiotics. Although bacteria, mold and yeast have frequently been found in bees, the presence of actinomycetes in bee hives had not been previously identified or reported. The aim of our research was to focus on the diversity of actinomycetes in bee hives in Thailand. Bees, brood cells and hive materials were collected from apiaries and natural sources. Thirty-two isolates of actinomycetes were isolated and identified using morphological, physiological, chemical and molecular characterization. Most of the isolates belonged to the genus Streptomyces. Some less frequent isolates were classified in the genera Nonomuraea, Nocardiopsis and Actinomadura.  相似文献   

7.
Aflatoxin B1 (AFB1) is a carcinogenic compound produced by filamentous fungi. In order to reduce AFB1 occurrence in foodstuffs, 13 strains of mycelial actinobacteria were tested in vitro for the efficacy to reduce AFB1 content; all were isolated from the Saharan soils of Algeria. Firstly, morphological study and molecular analysis, based on the 16S rRNA gene, indicated that these strains belong to Actinomadura, Nocardiopsis, Nonomuraea, Saccharothrix and Streptomyces genera. Secondly, each strain’s efficacy to reduce pure AFB1 content was studied in ISP2-medium. After a 4-day incubation at 30°C on AFB1-supplemented medium (5 ppm of AFB1), AFB1 was extracted and quantified. AFB1 content was reduced by all strains (42.9–97.6%). The three most efficient reducers (94.9–97.6%) were two strains belonging to the genus Streptomyces and one to the genus Saccharothrix. Among the latter, strains ACD6 and ABH19 showed no adsorption mechanism involved, suggesting a potential degradation mechanism. These findings led us to suggest that these actinobacterial strains could be used as decontamination treatments for the reduction of AFB1 content.  相似文献   

8.
30 strains of xylanolytic thermophilic actinomycetes were isolated from composted grass and cattle manure and identified as members of the generaThermomonospora, Saccharomonospora, Microbispora, Streptomyces andActinomadura. Screening of these strains for extracellular xylanase indicated that strains ofSaccharomonospora andMicrobispora generally were poor xylanase producers (0.5–1.5 U/ml) whereas relatively high activities were observed in cultures ofStreptomyces andActionomadura (4–12 U/ml).A preliminary characterization of the enzymes of strains of the latter genera suggested that xylanases of all the strains ofActinomadura exhibited higher thermostabilities than those ofStreptomyces. To evaluate the potential of thermophilicActinomadura for industrial applications, xylanases of three strains were studied in more detail. The highest activity levels for xylanases were observed in cultures grown on xylan and wheat bran. The optimal pH and temperature for xylanase activities ranged from 6.0 to 7.0 and 70 to 80°C. The enzymes exhibited considerable thermostability at their optimum temperature. The half-lives at 75°C were in the range from 6.5 to 17h. Hydrolysis of xylan by extracellular xylanases yielded xylobiose, xylose and arabinose as principal products. Estimated by the amount of reducing sugars liberated the degree of hydrolysis was 55 to 65%. Complete utilization of xylan is presumably achieved by -xylosidase activities which could be shown to be largely cell-associated in the 3Actinomadura strains.  相似文献   

9.
About 2700 strains of various kinds of microorganisms isolated from soil were tested for phospholipase D activity. All of the 200 selected strains were actinomycetes which were divided into two groups on the basis of the isomeric form of diaminopimelic acid (A2pm) present in the cell wall. Among 18 strains containing meso-A2pm, two strains were selected on the basis of taxonomical characteristics and productivity of phospholipase D. These two strains were examined for microbiological characteristics and found to belong to the genera Actinomadura and Nocardiopsis.  相似文献   

10.
Alkaliphilic streptomycetes were isolated from composite sand samples collected from six out of seven locations across a beach and dune sand system using starch-casein-nitrate agar supplemented with cycloheximide and buffered to pH 10.5. The isolates had colonial and chemotaxonomic properties consistent with their classification in the genus Streptomyces. They were assigned to 49 multimembered and 114 single-membered colour-groups given their ability to produce pigments on oatmeal and peptone-yeast-extract-iron agars and to corresponding taxa based on whole-genome rep-PCR banding patterns. Twenty-four isolates representing the colour and rep-PCR groups grew well from pH 5 to 11, and optimally at pH 9, as did phylogenetically close members of the Streptomyces griseus 16S rRNA gene clade. One hundred and twelve representative alkaliphilic streptomycetes formed a heterogeneous but distinct clade in the Streptomyces 16S rRNA gene tree. A 3-dimensional representation of 16S rRNA sequence data showed that the alkaliphilic streptomycetes formed a distinct group in multidimensional taxospace. It is evident that alkaliphilic streptomycetes are common in the beach and dune sand system and that representatives of this community form new centers of taxonomic variation within the genus Streptomyces that can be equated with species. GenBank accession numbers for the 16S rRNA gene sequences for the strains of the alkaliphilic streptomycetes Bd 095, Bd 064, Bd 077, Bd 013, Bd 108, Bd 088, Bd 012, Bd 187, Bd 128, Bd 174, Bd 167, Lt 005, Lt 006, Fd 015, Bd 099, Bd 059, Bd 159, Ht 015, Md 005, Ht 020, Bd 205, Md 063, Fd 004, Md 039 and Bd 092 are EU477215, EU477216, EU477217, EU477218, EU477219, EU477220, EU477221, EU477222, EU477223, EU477224, EU477225, EU477226, EU477227, EU477228, EU477229, EU477230, EU477231, EU477232, EU477233, EU477234, EU477235, EU477236, EU477237, EU477238 and EU477257, respectively.  相似文献   

11.
The taxonomic status of 16 strains received as Streptomyces hygroscopicus, Streptomyces melanosporofaciens, Streptomyces sparsogenes, Streptomyces sporoclivatus and Streptomyces violaceusniger was evaluated in a polyphasic study. Eleven of the organisms formed a distinct clade in the Streptomyces 16S rRNA gene tree with the type strains of Streptomyces asiaticus, Streptomyces cangkringensis, Streptomyces indonesiensis, Streptomyces javensis, Streptomyces malaysiensis, Streptomyces rhizosphaericus, Streptomyces yatensis and Streptomyces yogyakartensis, the members of this group produced rugose ornamented spores in spiral spore chains. The eleven strains were assigned to three established and four novel species, namely Streptomyces albiflaviniger sp. nov., Streptomyces demainii sp. nov., Streptomyces geldanamycininus sp. nov., Streptomyces griseiniger sp. nov., and Streptomyces hygroscopicus, Streptomyces melanosporofaciens and Streptomyces violaceusniger. It is also proposed that S. sporoclivatus becomes a subjective synonym of S. melanosporofaciens. S. sparsogenes NRRL 2940T, which produced ridged ornamented spores in spiral spore chains, formed a distinct phyletic line in the Streptomyces 16S rRNA gene tree and was readily distinguished from the other strains using a range of phenotypic properties. S. violaceusniger strains NRRL 8097, NRRL B-5799, NRRL 2834 and ISP 5182 fell outside the S. violaceusniger 16S rRNA gene clade and formed either smooth or ridged ornamented spores in either flexuous or spiral spore chains. These organisms were distinguished from one another and from their closest phylogenetic neighbors and were considered to merit species status as Streptomyces auratus sp. nov., Streptomyces phaeoluteichromatogenes sp. nov., Streptomyces phaeogriseichromatogenes sp. nov., and Streptomyces phaeoluteigriseus sp. nov., respectively. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of the tested strains are S. albiflaviniger NRRL B-1356T (AJ391812), S. auratus NRRL 8097T (AJ391816), S. geldanamycininus NRRL 3602T (DQ334781), S. griseiniger NRRL B-1865T (AJ391818), S. hygroscopicus NRRL 2387T (AJ391820), NRRL 2339 (AJ391821) and NRRL B-1477 (AJ391819), S. demainii NRRL B-1478T (DQ334782), S. melanosporofaciens NRRL B-12234T (AJ391837), S. phaeogriseichromatogenes NRRL 2834T (AJ391813), S. phaeoluteichromatogenes NRRL B-5799T (AJ391814), S. phaeoluteigriseus ISP 5182T (AJ391815), S. sparsogenes NRRL 2940T (AJ391817), S. sporoclivatus NRRL B-24330T (AJ 781369), S. violaceusniger ISP 5563T (AJ 391823) and NRRL B-1476T (AJ 391822).  相似文献   

12.
Metabolites from 796 isolates of aerobic actinomycetes were screened for plant growth regulatory properties using an algal bioassay. These included 266 isolates ofStreptomyces, 28 unidentified actinomycetes, and 502 isolates of novel actinomycetes represented by 18 genera. Algal growth inhibition of 30% was observed with 60 isolates, 37 of which belonged to the genusStreptomyces. Among other inhibitors were 8 isolates ofActinomadura, 6 ofActinoplanes, 2 each of the generaThermomonospora, Streptoverticillium, andPromicromonospora, and 3 unidentified. Metabolites from 70 isolates promoted algal growth by 20%. These included 13 isolates ofMicromonospora, 11 ofStreptomyces, 6 ofNocardia, 5 ofActinomadura, and 4 each ofRhodococcus andThermomonospora. Sixteen unidentified isolates; 3 isolates ofPromicromonospora; 2 isolates each ofActinoplanes, Streptosporangium, andOerskovia; and 1 of Thermoactinomyces peptonophilus-like organism andSaccharomonospora viridis also promoted the algal growth by 20%. The plant growth inhibitory properties of 9 actinomycetes and the growth promoting properties of 6 were demonstrable during the secondary screening on higher plants using chemicals extracted from the culture broth. The metabolites fromMicromonospora, Nocardia, Rhodococcus, Streptosporangium, andOerskovia isolates were associated with plant growth promotion only; those fromStreptomyces were most frequently involved with the growth inhibition.This is Michigan Agriculture Experiment Station Journal Article No. 12191.  相似文献   

13.
The authors submit the results of taxonomic comparative studies of the strainStreptomyces sp. 246, which produces a polypeptide type cytostatic antibiotic. Strain 246 is characterized by tufts of straight sporophores of the “Rectus-Flexibilis” type, smooth spores arranged in chains (over 10 spores in a chain), yellow aerial and substrate mycelium, a negative test for melanin synthesis, utilization of glucose, arabinose, xylose, mannitol, fructose and rhamnose and inability to grow on sucrose, inositol, raffinose and cellulose. The taxonomic characters ofStreptomyces sp. 246 are identical with those of the strainStreptomyces chrysomallus JA 1449-1 and differ manifestly from those ofStreptomyces antibioticus strains (producing actinomycins, antimycin A and oleandomycin), fromStreptomyces cinereoruber ETH 7451 (producing rhodomycin) and from the strainStreptomyces sp. 4127 (producing actinomycin D).  相似文献   

14.

A genomic-based polyphasic study was undertaken to establish the taxonomic status and biotechnological and ecological potential of a Streptomyces strain, isolate SF28T, that was recovered from the litter layer in a Polish Pinus sylvestris forest. The isolate had morphological characteristics and chemotaxonomic properties consistent with its classification in the genus Streptomyces. It formed long straight chains of spores with smooth surfaces, contained LL-diaminopimelic acid, glucose and ribose in whole-organism hydrolysates, produced major proportions of straight, iso- and anteiso- fatty acids, hexa- and octa-hydrogenated menaquinones with nine isoprene units and had a polar lipid pattern composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, glycophospholipids and three uncharacterized components. Phylogenetic trees prepared using 16S rRNA gene and multilocus gene sequences of conserved housekeeping genes showed that the isolate formed a branch that was loosely associated with the type strains of several validly published Streptomyces species. A draft genome generated for the isolate was rich in natural product-biosynthetic gene clusters with the potential to produce new specialised metabolites, notably antibiotics, and stress related genes which provide an insight into how it may have become adapted to the harsh conditions that prevail in acidic forest soils. A phylogenomic tree based on the genomes of the isolate and its phylogenetic neighbours confirmed that it formed a distinct lineage well separated from its closest evolutionary relatives. The isolate shared low average nucleotide identity and digital DNA:DNA hybridization values with its phylogenomic neighbours and was also distinguished from them using a combination of cultural and micromorphological properties. Given this wealth of taxonomic data it is proposed that isolate SF28T (=?DSM 113360 T?=?PCM 3163 T) be classified in the genus Streptomyces as Streptomyces pinistramenti sp. nov. The isolate showed pronounced antimicrobial activity, especially against fungal plant pathogens.

  相似文献   

15.
Scab disease significantly damages potatoes and other root crops. Some Streptomyces species have been reported as potato-scab pathogens. Identification of the phytopathogenic Streptomyces is mainly done on the basis of the 16S rRNA gene, but use of this gene has some limitations for discriminating these strains because they share high similarities of 16S rRNA gene sequences. We tested the RNase P RNA (rnpB) gene as a taxonomic marker to clarify the relationship among closely related scab-causing Streptomyces strains. The rnpB genes were analyzed for 41 strains including 9 isolates from Jeju, Korea. There were 4 highly variable regions including nucleotide gaps in the rnpB genes. Interspecies similarity of the rnpB gene in tested Streptomyces strains was lower than about 97%, while the intraspecies similarity was higher than about 98%. Phylogenetic analysis demonstrated that the rnpB tree has similar topology to the 16S rRNA gene tree, but produces a more divergent phyletic lineage. These results revealed that the rnpB gene could be used as a powerful taxonomic tool for rapid differentiation of closely related Streptomyces species. In addition, it was also suggested that the variable regions marked as α, β, γ, and δ in the rnpB gene could be useful markers for the detection of specific Streptomyces species.  相似文献   

16.
Streptomyces sp GE44282 was isolated in the course of a screening program for novel antibiotics. It co-produces heneicomycin and aurodox, two kirromycin-type antibiotics, which differ by the presence of an hydroxyl group at the C30 position of aurodox. Heneicomycin is converted into aurodox both by growing and resting cells ofStreptomyces sp GE44282 and by the producer of aurodox,Streptomyces goldiniensis ATCC 21386. This bioconversion of heneicomycin is substrate-specific and is not observed using the producer of heneicomycin,Streptomyces filippiniensis NRRL 11044. The three strains show very similar taxonomic characteristics. These results suggest that heneicomycin is a precursor of aurodox, the production of which depends on the bioconversion capability expressed by the strain.  相似文献   

17.
Thirty-eight actinomycetes were isolated from sediment collected from the Mariana Trench (10,898 m) using marine agar and media selective for actinomycetes, notably raffinose-histidine agar. The isolates were assigned to the class Actinobacteria using primers specific for members of this taxon. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Dermacoccus, Kocuria, Micromonospora, Streptomyces, Tsukamurella and Williamsia. All of the isolates were screened for genes encoding nonribosomal peptide and polyketide synthetases. Nonribosomal peptide synthetase sequences were detected in more than half of the isolates and polyketide synthases type I (PKS-I) were identified in five out of 38 strains. The Streptomyces isolates produced several unusual secondary metabolites, including a PKS-I associated product. In initial testing for piezotolerance, the Dermacoccus strain MT1.1 grew at elevated hydrostatic pressures.  相似文献   

18.
Alachlor (2-cloro-N-(methoxymethyl)-N-(2,6-diethylphenyl)-acetamide) is an extremely toxic and highly mobile herbicide that is widely used for pre-emergence control of grasses and weeds in many commercial crops in Brazil. In order to select soil actinomycetes able to degrade this herbicide, fifty-three actinomycete strains were isolated from soil treated with alachlor using selective conditions and subjected to in vitro degradation assays. Sixteen isolates were shown to be tolerant to high concentrations of the herbicide (up to 720 mg L-1), and six of these were able to grow and degrade 50 alachlor (72 mg L-1) in mineral salts medium. Morphological and phylogenetic analysis enabled the assignment of the alachlor-degrading strains to the genus Streptomyces. Strain LS151 was related to the type strains of Streptomyces capoamus/Streptomyces galbus, whereas strains LS143 and LS153 were related to Streptomyces bikiniensis. The remaining strains, LS166, LS177 and LS182, were similar in morphological features and recovered in a single cluster based on 16S rDNA sequence analysis, but shown to be distinct on the basis of genomic fingerprint data (rep-PCR). Though a definitive taxonomic assignment of alachlor-degrading strains was not possible, these data indicate that ability to degrade this pesticide was detected in different Streptomyces taxa.  相似文献   

19.
【目的】采用多位点序列分析方法,研究印度洋3 000 m以下深海沉积物中分离得到的16S rRNA基因比对高度相似的链霉菌菌株的种间系统发育关系,同时探讨各管家基因及多基因聚类分析后的种间区分能力。【方法】以分离自印度洋深海沉积物的7株Streptomyces albidoflavus,11株Streptomyces cavourensis,16株Streptomyces pratensis为研究对象,以16S rRNA、atpD、recA和rpoB基因片段为标记,通过PCR扩增、测序,获得序列。同时从NCBI上下载5株S.pratensis上述4个基因的序列,将所有序列在MLST网站进行比对,并构建系统进化树进行比较。【结果】S.pratensis各菌株种内比较发现,16S rRNA基因构建的系统进化树中相同基因型的菌株没有聚在一起,系统进化树不稳定,区分度不高。其余3个构建的系统进化树稳定,菌株的聚类关系与MLST数据库得到的基因型一致。同时,多基因聚类分析后将菌株分为6个类群。在3个种的种间多位点序列比较中,除区分度明显增加、进化树更加稳定以外,还发现rec A基因进化上比较特殊的菌株。【结论】多位点序列分析将实验菌株分为很多不同的类型,成功地将所分离的链霉菌进行了更细的分类,同时也找到部分菌株在个别基因上差异较大。此方法可以用于相近种的快速鉴定。  相似文献   

20.
A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway). Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号