首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

2.
The interaction of Δ- and Λ-[Ru(phen)2DPPZ]2+ (DPPZ = dipyrido[3,2-a:2′, 3′-c]phenazine, phen = phenanthroline) with a G-quadruplex formed from 5′-G2T2G2TGTG2T2G2–3′(15-mer) was investigated. The well-known enhancement of luminescence intensity (the ‘light-switch’ effect) was observed for the [Ru(phen)2DPPZ]2+ complexes upon formation of an adduct with the G-quadruplex. The emission intensity of the G-quadruplex-bound Λ-isomer was 3-fold larger than that of the Δ-isomer when bound to the G-quadruplex, which is opposite of the result observed in the case of double stranded DNA (dsDNA); the light switch effect is larger for the dsDNA-bound Δ-isomer. In the job plot of the G-quadruplex with Δ- and Λ-[Ru(phen)2DPPZ]2+, a major inflection point for the two isomers was observed at x ≈ .65, which suggests a binding stoichiometry of 2:1 for both enantiomers. When the G base at the 8th position was replaced with 6-methyl isoxanthopterin (6MI), a fluorescent guanine analog, the excited energy of 6-MI transferred to bound Δ- or Λ-[Ru(phen)2DPPZ]2+, which suggests that at least a part of both Ru(II) enantiomers is close to or in contact with the diagonal loop of the G-quadruplex. A luminescence quenching experiment using [Fe(CN)6]4- for the G-quadruplex-bound Ru(II) complex revealed downward bending curves for both enantiomers in the Stern–Volmer plot, which suggests the presence of Ru(II) complexes that are both accessible and inaccessible to the quencher and may be related to the 2:1 binding stoichiometry.  相似文献   

3.
Spectroscopic parameters for two novel ruthenium complexes on binding to nucleic acids of varying sequences and conformations have been determined. These complexes, Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppz = dipyrido[3,2:a-2',3':c]-phenazine) serve as "molecular light switches" for DNA, displaying no photoluminescence in aqueous solution but luminescing intensely in the presence of DNA. The luminescent enhancement observed upon binding is attributed to the sensitivity of the excited state to quenching by water; in DNA, the metal complex, upon intercalation into the helix, is protected from the aqueous solvent, thereby preserving the luminescence. Correlations between the extent of protection (depending upon the DNA conformation) and the luminescence parameters are observed. Indeed, the strongest luminescent enhancement is observed for intercalation into DNA conformations which afford the greatest amount of overlap with access from the major groove, such as in triple helices. Differences are observed in the luminescent parameters between the two complexes which also correlate with the level of water protection. In the presence of nucleic acids, both complexes exhibit biexponential decays in emission. Quenching studies are consistent with two intercalative binding modes for the dppz ligand from the major groove: one in which the metal-phenazine axis lies along the DNA dyad axis and another where the metal-phenazine axis lies almost perpendicular to the DNA dyad axis. Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ are shown here to be unique reporters of nucleic acid structures and may become valuable in the design of new diagnostics for DNA.  相似文献   

4.
The binding mode of Delta- and Lambda-[Ru(1,10-phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) to DNA in the presence of 4',6-diamidino-2-phenylindole (DAPI) at a low and high [DAPI]/[DNA base] ratio (0.02 and 0.20, respectively) was investigated using electric absorption and circular dichroism spectroscopy. The spectral properties of both the Delta- and Lambda-[Ru(phen)(2)DPPZ](2+) were not altered in the presence of DAPI disregarding the [DAPI]/[DNA] ratio, suggesting that the presence of DAPI in the minor groove of DNA does not affect the binding mode of the [Ru(phen)(2)DPPZ](2+) complex to DNA. The transferring excited energy of DAPI to both Delta- and Lambda-[Ru(phen)(2)DPPZ](2+) occurs through F?rster type resonance when they both spontaneously bound to DNA. At a high [DAPI]/[DNA] ratios, an upward bending curve in the Stern-Volmer plot, and a shortening the DAPI fluorescence decay time with increasing [Ru(phen)(2)DPPZ](2+) concentration were found. These results indicate that the quenching of the DAPI's fluorescence occurs through both the static and dynamic mechanisms. In contrast, the quenching mechanism at a low [DAPI]/[DNA] ratios was found to be purely static. The static quenching constant decreased linearly with respect to the [DAPI]/[DNA] ratio. Decrease in quenching efficiency can be explained by the association constant of [Ru(phen)(2)DPPZ](2+) to DNA while being within a quenchable distance from a DAPI molecule.  相似文献   

5.
The binding modes of the [Ru(II)(1,10-phenanthroline)(L1L2) dipyrido[3,2-a:2′,3′-c]phenazine]2+ {[Ru(phen)(py) Cl dppz]+ (L1 = Cl, L2 = pyridine) and ([Ru(phen)(py)2dppz]2+ (L1 = L2 = pyridine)} to native DNA is compared to that of the [Ru(II)(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]2+ complex ([Ru(phen)2dppz]2+) by various spectroscopic and hydrodynamic methods including electric absorption, linear dichroism (LD), fluorescence spectroscopy, and viscometric titration. All measured properties, including red-shift and hypochromism in the dppz absorption band, nearly perpendicular molecular plane of the dppz ligand with respect to the local DNA helix axis, prohibition of the ethidium binding, the light switch effect and binding stoichiometry, increase in the viscosity upon binding to DNA, increase in the melting temperature are in agreement with classical intercalation of dppz ligand of the [Ru(phen)2dppz]2+ complex, in which both phenanthroline ligand anchored to the DNA phosphate groups by electrostatic interaction. [Ru(phen)(py)2 dppz]2+ and [Ru(phen)(py) Cl dppz]+ complexes had one of the phenanthroline ligand replaced by either two pyridine ligands or one pyridine plus a chlorine ion. They exhibited similar protection from water molecules, interaction with DNA bases, and occupying site that is common with ethidium. The dppz ligand of these two Ru(II) complex were greatly tilted relative to the DNA helix axis, suggesting that the dppz ligand resides inside the DNA and is not perpendicular relative to the DNA helix axis. These observation suggest that anchoring the [Ru(phen)2dppz]2+complex by both phenanthroline is essential for the dppz ligand to be classically intercalated between DNA base-pairs.  相似文献   

6.
Lee BW  Moon SJ  Youn MR  Kim JH  Jang HG  Kim SK 《Biophysical journal》2003,85(6):3865-3871
The binding site of Delta- and Lambda-[Ru(phenanthroline)2L]2+ (L being phenanthroline (phen), dipyrido[3,2-a:2'3'-c]phenazine (DPPZ), and benzodipyrido[3,2-a:2'3'-c]phenazine (benzoDPPZ)), bound to poly[d(A-T)2] in the presence and absence of 4',6-diamidino-2-phenylindole (DAPI) was investigated by circular dichroism and fluorescence techniques. DAPI binds at the minor groove of poly[d(A-T)2] and blocks the groove. The circular dichroism spectrum of all Ru(II) complexes are essentially unaffected whether the minor groove of poly[d(A-T)2] is blocked by DAPI or not, indicating that the Ru(II) complexes are intercalated from the major groove. When DAPI and Ru(II) complexes simultaneously bound to poly[d(A-T)2], the fluorescence intensity of DAPI decreases upon increasing Ru(II) complex concentrations. The energy of DAPI at excited state transfers to Ru(II) complexes across the DNA via the F?rster type resonance energy transfer. The efficiency of the energy transfer is similar for both [Ru(phen)2DPPZ]2+ and [Ru(phen)2benzoDPPZ]2+ complexes, whereas that of [Ru(phen)3]2+ is significantly lower. The distance between DAPI and [Ru(phen)3]2+ is estimated as 0.38 and 0.64 F?rster distance, respectively, for the Delta- and Lambda-isomer.  相似文献   

7.
Proudfoot EM  Mackay JP  Karuso P 《Biochemistry》2001,40(15):4867-4878
The molecular recognition of oligonucleotides by chiral ruthenium complexes has been probed by NMR spectroscopy using the template Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2)) (bidentate)](2+), where the bidentate ligand is one of phen (1,10-phenanthroline), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline), or phi (9,10-phenanthrenequinone diimine) and picchxnMe(2)() is N,N'-dimethyl-N,N'-di(2-picolyl)-1,2-diaminocyclohexane. By varying only the bidentate ligand in a series of complexes, it was shown that the bidentate alone can alter binding modes. DNA binding studies of the Delta-cis-alpha-[Ru(RR-picchxnMe(2))(phen)](2+) complex indicate fast exchange kinetics on the chemical shift time scale and a "partial intercalation" mode of binding. This complex binds to [d(CGCGATCGCG)](2) and [d(ATATCGATAT)](2) at AT, TA, and GA sites from the minor groove, as well as to the ends of the oligonucleotide at low temperature. Studies of the Delta-cis-beta-[Ru(RR-picchxnMe(2))(phen)](2+) complex with [d(CGCGATCGCG)](2) showed that the complex binds only weakly to the ends of the oligonucleotide. The interaction of Delta-cis-alpha-[Ru(RR-picchxnMe(2))(dpq)](2+) with [d(CGCGATCGCG)](2) showed intermediate exchange kinetics and evidence of minor groove intercalation at the GA base step. In contrast to the phen and dpq complexes, Delta-cis-alpha- and Delta-cis-beta-[Ru(RR-picchxnMe(2))(phi)](2+) showed evidence of major groove binding independent of the metal ion configuration. DNA stabilization induced by complex binding to [d(CGCGATCGCG)](2) (measured as DeltaT(m)) increases in the order phen < dpq and DNA affinity in the order phen < dpq < phi. The groove binding preferences exhibited by the different bidentate ligands is explained with the aid of molecular modeling experiments.  相似文献   

8.
The new mixed ligand complex [Ru(5,6-dmp)2(dppz)]Cl2 [5,6-dmp = 5,6-dimethyl-1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine] has been isolated and its DNA-binding properties studied by employing UV-visible (UV-Vis), steady-state and time-resolved emission and circular dichroism spectral methods, viscometry, thermal denaturation and cyclic/differential pulse voltammetric techniques. The complex acts as a 'molecular light-switch' on binding to DNA, but the enhancement in emission intensity is only 75% of that of the parent complex [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline). The emission decay curves and quenching studies suggest two different DNA-binding modes both involving intercalation of the dppz ligand of [Ru(5,6-dmp)2(dppz)]Cl2. The characteristic red-shift of the induced CD signal, which is not observed for the phen analogue, arises from exciton coupling. The hydrophobicity and polarizability of 5,6-dmp co-ligand strongly favour the formation of a stable structural and electronic scaffold on the DNA surface for the unbound molecules to couple with the DNA-bound complexes facilitating spontaneous assembly of novel extended molecular aggregates using DNA as a helical nanotemplate. This observation is consistent with the shift in Ru(II)/Ru(III) redox potential to more positive values with a dramatic drop in peak current on binding of the 5,6-dmp complex to calf thymus (CT) DNA. Equilibrium dialysis experiments monitored by CD spectroscopy unambiguously reveal the preferential binding of the delta-enantiomer to the right-handed calf thymus (CT) DNA. The 5,6-dmp complex exhibits preferential binding to [d(AT)6]2 over [d(GC)6]2 and the complex aggregates formed consist of six [Ru(5,6-dmp)2(dppz)]2+ cations per base pair of [d(AT)6]2; however, only one [Ru(phen)2(dppz)]2+ cation per base pair is involved in DNA binding.  相似文献   

9.
Ruthenium complexes with one dipyrido[3,2-a:2′-3′-c]phenazine (dppz) ligand, e.g. [Ru(phen)2(dppz)]2+ (phen = phenanthroline), shows strong binding to double helical DNA and are well-known DNA “light-switch” molecules. We have here investigated four new [Ru(phen)2(dppz)]2+ derivatives with different bulky quaternary ammonium substituents on the dppz ligand to find relationships between molecular structure and intercalation kinetics, which is considered to be of importance for antitumor applicability. Linear dichroism spectroscopy shows that the enantiomers of the new complexes exhibit very similar binding geometries (intercalation of dppz moiety between adjacent DNA base pairs) as the enantiomers of the parent [Ru(phen)2(dppz)]2+ complex. Absorption spectra and luminescence properties provide further evidence for a final intercalative binding mode which has to be reached by threading of a bulky moiety between the strands of the DNA. Δ-enantiomers of all the new complexes show much slower association and dissociation kinetics than that of a reference complex without a cationic substituent. Kinetics were not very different whether the bulky quaternary group was derived from hexamethylene tetramine or 1,4-diazabicyclo-(2,2,2)octane (DABCO) or whether it had one or two positive charges. However, a complex in which the hexamethylene tetramine substituent is attached via a phenyl group showed a lowered association rate, in addition to an improved quantum yield of luminescence. A second positive charge on the DABCO substituent resulted in a much slower dissociation rate, suggesting that the distance from the Ru-centre and the amount of charge are both important for threading intercalation kinetics.  相似文献   

10.
The ligand ODHIP (3,4-dihydroxyl-imidazo[4,5-f][1,10]phenanthroline) and its cobalt(III) complex [Co(bpy)(2)(ODHIP)](3+) were synthesized and characterized. Binding of this complex with calf thymus DNA has been investigated by spectroscopic methods and viscosity. The experimental results indicated that the complex bound to DNA by intercalation. In Tris buffer, the complex could emit relatively weak luminescence. After binding to DNA, the notable enhancement was observed. However, when the Cu(2+) was further added, the luminescence decreased gradually and disappeared after the equimolar concentrations of Cu(2+) was added, which exhibited the "off-on-off" properties of molecular light switch.  相似文献   

11.
Three stereoisomers of a Ru(II) complex bearing a chiral bis-phenanthroline Tr?ger's base analogue, TBphen2 (1), have been isolated from the reaction of the enantiomerically pure precursor complex Lambda- (or Delta-) cis-[Ru(phen)2(py)2]2+ (phen=1,10-phenanthroline, py=pyridine) with the racemic mixture of 1. Each stereoisomer of [Ru(phen)2TBphen2]2+ (2) has been characterized by 1H NMR and CD spectroscopy. Electrochemical studies revealed that the redox properties of 2 are not influenced by the stereochemistry, however, the electrochemical oxidation of the metallic center is irreversible because of the diazocine bridge of the TBphen2 ligand. Steady-state emission measurements in the presence of calf thymus DNA showed that the DNA binding of [Ru(phen)2TBphen2]2+ depends on the stereoisomer and is mainly controlled by the absolute configuration of the metal center of the complex. The affinity constant for the stereoisomer Delta-S-2 is 10(2) higher than that for Lambda-S-2 and rac-[Ru(phen)3]2+.  相似文献   

12.
The design of new molecular "light switches" for DNA   总被引:6,自引:0,他引:6  
Two novel ruthenium(II) complexes, [Ru(pztp)2(phen)](ClO4)2 and [Ru(pztp)2(bpy)] (ClO4)2, have been synthesized and characterized by UV/Vis and 1H NMR spectroscopies and mass spectrometry. The MeCN solutions of both complexes display fluorescence that was found to be highly sensitive to the presence and concentration of water. The complexes behave like a "light switch" for DNA in that they do not luminesce in water but were "turned on" in the presence of DNA and show emission enhancement with the increase of DNA concentration. Their DNA binding behavior was also studied by absorption spectroscopy and viscosity measurements, which suggest that the DNA-complex interaction involves intercalation of the metal-bound pztp ligand into the base pairs of duplex DNA.  相似文献   

13.
A novel ruthenium(II) complex of dipyridophenazine (DPPZ) with the ancillary ligand imidazole[4,5-f] [1,10]phenanthroline (IP), [Ru(IP)2(DPPZ)] (PF6)2, has been synthesized and characterized by elemental analysis, 1D and 2D 1H NMR, fast-atom bombardment mass spectra (FABMS), electronic spectroscopy and cyclic voltammetry. The DNA-binding properties of the complex were studied by spectroscopic methods. The intrinsic binding constant, K =2.1 × 107M−1, of the complex to calf thymus DNA has been determined by absorption titration in 5 mmol dm−3 Tris-HCl, 50 mmol dm−3 NaCl buffer (pH 7.0). The excited state lifetimes and luminescence quenching with [Fe(CN)6]4− as the quencher in the presence of DNA were also tested and mono-exponentiality was observed for the emission decay curves. Viscosity measurements together with the optical titrations unambiguously proved that the complex bound with DNA intercalatively and that the binding affinity to DNA was several times larger than that of the parent complex [Ru(bpy)2(DPPZ)]2+.  相似文献   

14.
We have shown previously that complexes containing 1,4,5,8-tetraazaphenanthrene (TAP) ligands are able to form photoadducts with the guanine bases of DNA and oligonucleotides. In this work, we have exploited this specific photoreaction for carrying out photo-cross-linkings between guanine-containing oligonucleotides (G-ODNs) and biodegradable polymers derivatized with the photoreactive Ru(II) compounds. The aim in the future is to use these polymer conjugates as vectorizing agents of the metallic compounds inside the cells. Thus, photooxidizing Ru(II) complexes such as [Ru(TAP)3]2+ and [Ru(TAP)2phen]2+ (phen = 1,10-phenanthroline) have been derivatized by an oxyamine function to attach them, via an oxime ether linkage, to a soluble 6 or 80 kDa poly-[N-(2-hydroxyethyl)-l-glutamine] polymer that contains pendent aldehyde groups. It is demonstrated that the resulting Ru-labeled polymers exhibit photophysical properties and a photochemistry that are comparable with those of the free, nonattached complexes. The photo-cross-linkings with the G-ODNs are clearly detected by gel electrophoresis with the 6 kDa Ru conjugates upon illumination.  相似文献   

15.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

16.
A novel ligand 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4′,5′-f][1,10]-phenanthroline (NMIP) and its complex [Ru(phen)2(NMIP)]2+ have been synthesized and characterized by mass spectroscopy, 1H NMR and cyclic voltammetry. Binding of the complex with calf thymus DNA (CT DNA) has been investigated by spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that [Ru(phen)2(NMIP)]2+ binds to DNA via partial intercalative mode and the individual enantiomers of it bind to DNA in different rates. [Ru(phen)2(NMIP)]2+ has also been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled Form I to the open circular Form II upon irradiation.  相似文献   

17.
Abstract

A new Ru(II) complex of [Ru(bpy)2(Hppip)]2+ {bpy = 2,2′-bipyridine; Hppip = 2-(4-(pyridin- 2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)2(Hpip)]2+ {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline}. The acid-base properties of [Ru(bpy)2(Hppip)]2+ studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)2(Hppip)]2+ that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) × 105 M?1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

18.
Two new polypyridyl ligands containing substituent Br at different positions in the phenyl ring, PBIP [PBIP=2-(4-bromophenyl)imidazo[4,5-f]1,10-phenanthroline], OBIP [OBIP=2-(2-bromophenyl)imidazo[4,5-f]1,10-phenanthroline] and their Ru(II) complexes, [Ru(phen)2PBIP]2+ 1, [Ru(phen)2OBIP]2+ 2 (phen=1,10-phenanthroline), have been synthesized and characterized. The binding strength of the two complexes to calf thymus DNA (CT DNA) was investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The theoretical calculations for these two complexes were also carried out applying the density functional theory (DFT) method. The experimental results show that the Br group substituting H at different positions of the phenyl ring in the intercalated ligand has significant effects on the spectral properties and the DNA-binding behaviors of Ru(II) complexes. Both the complexes can bind to CT DNA in intercalative mode and interact with CT DNA enantioselectively. Moreover, complex 1 can bind to CT DNA more strongly than complex 2, and complex 2 can become a much better candidate as an enantioselective binder to CT DNA than complex 1. The theoretical calculations show that both intercalative ligands, PBIP and OBIP, in these two complexes are essentially planar, and the obtained electronic structures of the complexes can be used to explain reasonably some of their experimental regularities or trends. Such experimental and theoretical information will be useful in design of novel probes of nucleic acid structures.  相似文献   

19.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

20.
A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号