共查询到20条相似文献,搜索用时 0 毫秒
1.
A. D. Kozhevnikova I. V. Seregin E. I. Bystrova A. I. Belyaeva M. N. Kataeva V. B. Ivanov 《Russian Journal of Plant Physiology》2009,56(2):242-250
The effects of Pb, Sr, and Ni nitrates on the root growth, its cell division and elongation were studied. Two-day-old maize seedlings were incubated on the 35 μM Ni(NO3)2, 10 μM Pb(NO3)2, or 3 mM Sr(NO3)2 in the presence or absence of 3 mM Ca(NO3)2. Metal toxicity was evaluated after the inhibition of root growth for the first and second days of incubation in comparison with the roots kept on water or Ca(NO3)2 solution. The contents of metals were determined in the apical (the first centimeter from the tip) and basal (the third centimeter from the kernel) root parts by voltamperometry and atomic-absorption spectrophotometry. We measured the length of the meristem, the length of the fully elongated cells, counted the mitotic index (MI) in the meristem and the number of meristematic cells in the cortex row; we also calculated duration the cell cycle. In the absence of Ca(NO3)2, the metal content in the apical root region was higher than in basal one. In the presence of Ca(NO3)2, we observed reverse ratio most pronounced in the case of Pb and Sr. All metals tested markedly reduced MI in the cortex, which was determined by the increase in the cell cycle duration and accompanied by the meristem shortening. These metals affected differently cell division and elongation: Ni inhibited mainly cell division and to a lesser degree their elongation, whereas Sr and Pb affected both cell division and elongation; only Sr treatment resulted in the increased length of the fully elongated cells. In the presence of Ca, all studied growth indices changed less than in the absence of Ca, which was manifested in the less severe suppression of the root growth and was in agreement with the lower accumulation of the metals in the root tips. Possible causes for the heavy metal action on growth are discussed in connection with the specificity of their transport and accumulation. 相似文献
2.
Lycorine, an alkaloid isolated from bulbs of Amarillidaceae,was found to be a powerful inhibitor of cell division and elongation.Adding different concentrations of lycorine from 106M to 104 M in an appropriate growth-medium strongly inhibitedcell division in explants of lettuce pith parenchyma. The sameresult was obtained with liquid yeast cultures growing exponentially. Lycorine-treated meristematic cells of the primary roots ofVicia faba also showed rapid inhibition of the mitotic indexwhile interphase cells increased proportionately. Lycorine alsoinhibited endogenous and auxin-induced cell elongation in Avenacoleoptiles and pea segments. Since both cell division and cell elongation require proteinsynthesis and RNA synthesis, the assumption is that lycorineprobably inhibits one of the two syntheses. 1This study was supported by a contract between the NationalResearch Council of Italy and University of Bari, Instituteof Botany. (Received November 27, 1972; ) 相似文献
3.
Rahman A Tsurumi S Amakawa T Soga K Hoson T Goto N Kamisaka S 《Plant & cell physiology》2000,41(1):1-9
Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division. 相似文献
4.
H. D. Landahl 《Bulletin of mathematical biology》1942,4(2):45-62
An equation for the rate of elongation of a dividing egg is integrated and generalized. The rates of elongation and constriction
of a number of eggs under various conditions are analyzed and compared with the theoretical predictions. The theory accounts
rather well for a large body of data on elongation and constriction. The general shapes of the elongation and constriction
curves are predicted and the orders of magnitude of the parameters are satisfactory. One of the parameters for the elongation
curves is related theoretically to the parameter of the constriction curves, and the correct order of magnitude is obtained
if one parameter is predicted from the other. 相似文献
5.
Phosphorus deficiency decreases cell division and elongation in grass leaves 总被引:3,自引:0,他引:3
下载免费PDF全文

Leaf growth in monocotyledons results from the flux of newly born cells out of the division zone and into the adjacent elongation-only zone, where cells reach their final length. We used a kinematic method to analyze the effect of phosphorus nutrition status on cell division and elongation parameters in the epidermis of Lolium perenne. Phosphorus deficiency reduced the leaf elongation rate by 39% due to decreases in the cell production rate (-19%) and final cell length (-20%). The former was solely due to a lower average cell division rate (0.028 versus 0.046 cell cell(-1) h(-1)) and, thus, a lengthened average cell cycle duration (25 versus 15 h). The number of division cycles of the initial cell progeny (five to six) and, as a result, the number of meristematic cells (32-64) and division zone length were independent of phosphorus status. Accordingly, low-phosphorus cells maintained meristematic activity longer. Lack of effect of phosphorus deficiency on meristematic cell length implies that a lower division rate was matched to a lower elongation rate. Phosphorus deficiency did not affect the elongation-only zone length, thus leading to longer cell elongation duration (99 versus 75 h). However, the substantially reduced postmitotic average relative elongation rate (0.045 versus 0.064 mm mm(-1) h(-1)) resulted in shorter mature cells. In summary, phosphorus deficiency did not affect the general controls of cell morphogenesis, but, by slowing down the rates of cell division and expansion, it slowed down its pace. 相似文献
6.
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR
5-fluorodeoxyuridine
- GA(s)
gibberellin(s)
- GA3
gibberellic acid 相似文献
7.
Mitotic activity was investigated in the primary meristem of horizontally oriented excised root tips of Zea mays during the first six hours of their georeaction. The only statistically significant change that could be detected in the meristem was a decrease of the length of its upper half. No significant difference in mitotic activity was found between the upper and lower halves of roots kept continuously horizontal for 6 h. Cell proliferation thus seems relatively insensitive to changes in the redistribution of endogenous growth regulators that are believed to occur within the meristem during the onset of geotropism. In the zone of bending proximal to the meristem cell length was significantly greater in the upper half than in either the lower half or in the equivalent position in vertical control roots. Thus, cell elongation seems to be promoted in the upper half of the horizontal root. Thus, The differences in cell length were not accompanied by any change in the proportion of nuclei synthesising DNA in these elongating, non-meristematic cells. 相似文献
8.
The initiation of axial organ growth in germinating broad bean (Vicia faba var. minor) and cotton (Gossypium hirsutum) seeds was studied in terms of cell elongation and cell division. Seed imbibition occurred in polyethylene glycol (M.W.6000) solutions at various concentrations that retarded the radicle protrusion and maintained the tissue hydration at various levels. The triggering of cell elongation in broad bean hypocotyl or cotton radicle depended on tissue hydration up to the threshold level. The initiation of cell elongation was independent of the processes preparing for the initiation of cell division in the meristems. The appearance of mitotic activity in roots was examined relative to water content in the meristem, time of radicle emergence, and root length. The initiation of cell division did not directly depend on hydration level reached and time of radicle protrusion; however, the commencement of mitoses was determined by the presence of a threshold number of elongating cells. The possibility of a mitotic factor formed by elongating cells is discussed.Abbreviations PEG polyethylene glycol 相似文献
9.
Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades 总被引:13,自引:5,他引:13
Leaf elongation rate (LER) in grasses is dependent on epidermal cell supply (number) and on rate and duration of epidermal cell elongation. Nitrogen (N) fertilization increases LER. Longitudinal sections from two genotypes of tall fescue (Festuca arundinacea Schreb.), which differ by 50% in LER, were used to quantify the effects of N on the components of epidermal cell elongation and on mesophyll cell division. Rate and duration of epidermal cell elongation were determined by using a relationship between cell length and displacement velocity derived from the continuity equation. Rate of epidermal cell elongation was exponential. Relative rates of epidermal cell elongation increased by 9% with high N, even though high N increased LER by 89%. Duration of cell elongation was approximately 20 h longer in the high- than in the low-LER genotype regardless of N treatment. The percentage of mesophyll cells in division was greater in the high- than in the low-LER genotype. This increased with high N in both genotypes, indicating that LER increased with cell supply. Division of mesophyll cells adjacent to abaxial epidermal cells continued after epidermal cell division stopped, until epidermal cells had elongated to a mean length of 40 micrometers in the high-LER and a mean length of 50 micrometers in the low-LER genotype. The cell cycle length for mesophyll cells was calculated to be 12 to 13 hours. Nitrogen increased mesophyll cell number more than epidermal cell number: in both genotypes, the final number of mesophyll cells adjacent to each abaxial epidermal cell was 10 with low N and 14 with high N. A spatial model is used to describe three cell development processes relevant to leaf growth. It illustrates the overlap of mesophyll cell division and epidermal cell elongation, and the transition from epidermal cell elongation to secondary cell wall deposition. 相似文献
10.
Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls 总被引:14,自引:0,他引:14
Summary The response of cell division and cell elongation to low cell water potentials was studied in etiolated, intact soybean hypocotyls desiccated either by withholding water from seedlings or by subjecting hypocotyls to pressure. Measurements of hypocotyl water potential and osmotic potential indicated that desiccation by withholding water resulted in osmotic adjustment of the hypocotyls so that turgor remained almost constant. The adjustment appeared to involve transport of solutes from the cotyledons to the hypocotyl and permitted growth of the seedlings at water potentials which would have been strongly inhibitory had adjustment not occurred. Growth was ultimately inhibited in hypocotyls due to inhibition of cell division and cell elongation to a similar degree. The inhibition of cell elongation appeared to result from a change in the minimum turgor necessary for growth. On the other hand, when intact hypocotyls were exposed to pressure for 3 h, osmotic adjustment did not occur, turgor decreased, and the sensitivity of growth to low cell water potentials increased, presumably due to inhibition of cell elongation. Thus, although cell division was sensitive to low cell water potentials in soybean hypocotyls, cell elongation had either the same sensitivity or was more sensitive, depending on whether the tissue adjusted osmotically. Osmotic adjustment of hypocotyls may represent a mechanism for preserving growth in seedlings germinating in desiccated soil.Supported by a grant from the Illinois Agricultural Experiment Station, University of Illinois and grant 1-T1-GM-1380 from the United States Public Health Service. 相似文献
11.
Summary Removal and subsequent reformation of microtubules in cells of the root-tips ofAzolla pinnata R. Br. was achieved by short pulse treatments with the drug colchicine. Loss of microtubules led to the formation of multinucleate cells more frequently than to the arrest of mitosis at metaphase, and primary and secondary wall formation was also disrupted. Recovery of root development was limited. Growth of all roots ceased 5–6 days after the pulse treatment. Following the reappearance of microtubules, renewed deposition of normal wall thickenings occurred in developing xylem elements. Multinucleate cells became subdivided by walls in the apparent absence of a phragmoplast. The plane in which the new wall was formed was often located as it would have been in an untreated root, but in a number of cases abnormal or precious positioning of new walls was observed. Clusters of microtubules, matrix material, and vesicles or particles, taken to indicate microtubule initiation, were observed during the recovery from treatment. 相似文献
12.
Gerrit Smit Christiaan C. de Koster Jan Schripsema Herman P. Spaink Anton A. van Brussel Jan W. Kijne 《Plant molecular biology》1995,29(4):869-873
Nodulation (root nodule formation) in legume roots is initiated by the induction of cell divisions and formation of root nodule primordia in the plant root cortex, usually in front of the protoxylem ridges of the central root cylinder. We isolated a factor from the central cylinder (stele) of pea roots which enhances hormone-induced cell proliferation in root cortex explants at positions similar to those of nodule primordia. The factor was identified as uridine. Uridine may act as a morphogen in plant roots at picomolar concentrations. 相似文献
13.
R. M. Esteban J. G. Collado F. J. Lopez Andreu M. Fernandez Herrera 《Plant and Soil》1985,88(1):149-151
Summary In relation to a biochemical diagnosis of B-affected plants, the influence of boron on soluble protein and sugar contents in roots of tomato plants was investigated. Differences in protein and sugar contents occur throughout the culture period of tomato plant. Boron deficiency results in an accumulation of proteins and both total and reducing sugars. 相似文献
14.
It is known that potential bioregulators may be present among lipoxygenase oxidation products. A possibility of mitotic cycle regulation by 12-hydroxy-9(Z)-dodecenic acid (12-HDA) and also its influence on the growing function (seed germination, root and epicotyl growth) have been studied. It has been determined that 12-HDA activity is directed to the strengthening of growing function which allowed to suppose that oxylipin is capable of regulating cell division. 12-HDA participation in the mitotic cycle regulation were determined by the originally developed test system using simultaneously light microscopy. The concentration and temporal dependencies of cell division were studied under the influence of 12-HDA. The raise of mitosis (up to 17.5 times) has been registered in comparison with the control variant by the least concentration of 12-HDA (10(-9) M) up to the 4th h of influence, confirming oxypilin participation in mitotic cycle regulation. 相似文献
15.
Plant Growth Regulation - Hypocotyl length is determined by cell division and elongation, which are associated with canonical cell cycle and endoreduplication. Plant hormone brassinosteroid (BR) is... 相似文献
16.
F.M. Shakirova A.R. Kildibekova M.V. Bezrukova A.M. Avalbaev 《Plant Growth Regulation》2004,42(2):175-180
The mitogenic activity of wheat germ agglutinin (WGA) has been studied in roots of 4-day-old wheat seedlings. WGA had a more pronounced stimulating effect on cell division than the known mitogens concanavalin A and phytohemagglutinin whereas gliadin had no effect. Treatment of wheat seedling roots with exogenous WGA led to the accumulation of indoleacetic acid and cytokinins, hormones that play an important role in the activation of plant cell growth. The data on the combined effect of 24-epibrassinolide and WGA on cell division and accumulation of phytohormones in seedling roots support a possible link between the endogenous WGA level and hormonal regulation of cell division in the root meristem of wheat plants. 相似文献
17.
Inhibition of lateral wall elongation by mecillinam stimulates cell division in certain cell division conditional mutants of Escherichia coli. 总被引:1,自引:4,他引:1
下载免费PDF全文

The effect of mecillinam, a beta-lactam antibiotic that specifically binds penicillin-binding protein 2 of Escherichia coli, causes transition from rod to coccal shape, and inhibits cell division in sensitive cells, has been tested on three different E. coli temperature-sensitive cell division mutants. At the nonpermissive temperature, the antibiotic allows an increase in cell number for strains BUG6 and AX655 but not for AX621. In strain AX655, the cell division stimulation was observed only if the antibiotic was added immediately after shifting to the nonpermissive temperature, whereas in BUG6, the rise in cell number was observed also when mecillinam was added after 90 min of incubation at the nonpermissive temperature. In all cases, cell division began occurring 30 min after addition of the antibiotic. Mecillinam had no effect on division of dnaA, dnaB temperature-sensitive mutants or on division of BUG6 derivatives made resistant to this antibiotic. Other beta-lactam antibiotics such as penicillin, ampicillin, cephalexin, and piperacillin and non beta-lactam antibiotics such as fosfomycin, teichomycin, and vancomycin that inhibit cell wall synthesis did not show any effect on cell division for any of the mutants. The response of the three cell division mutants to mecillinam is interpreted in terms of a recently proposed model for shape regulation in bacteria. 相似文献
18.
Summary The study of the cell division cycle by means of caffeine labelling inAllium roots, at 15° C, employing intact root and decapitated roots at several levels (0.5, 1.0, 1.5, 2.0, and 2.5 mm) has shown that the number of cycles developed by the cells is constant at each meristem level. This number and the durations of the cycles are not affected by the decapitation. It is suggested that the cell cycle is controlled in the meristematic cells by an intracellular programme which would be developed throughout the meristem.However, the larger the region decapitated is, the more decreases the growth rate of the roots. The removal of the root cap (about 0.5 mm) did not modify the rate of root growth, although it blocked the geotropic response. The quiescent center is proposed as a source of auxin controlling cell elongation. 相似文献
19.
Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 °C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 °C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta. 相似文献