首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the molecular mechanisms of cancer metastasis, we have isolated a high-metastatic bladder cancer cell subpopulation from a low-metastatic cell line by using an in vivo selection system. Cells in the subpopulation showed a high ability to form invadopodia, the filamentous actin (F-actin)-based membrane protrusions that play an essential role in cancer cell invasion. Analysis of the gene expression profile revealed that the expression of an intermediate filament (IF) protein, vimentin and a cytoskeletal linker protein, plectin was up-regulated in the high-metastatic subpopulation compared with the low metastatic cell line. Here we report a novel role of vimentin IF and plectin in metastasis. In invasive bladder cancer cells, the vimentin IF-plectin-invadopodia F-actin link was formed. Disruption of this link severely impaired invadopodia formation, reducing the capacities of extracellular matrix degradation, transendothelial migration and metastasis. In addition, the vimentin assembly into the filaments was required for invadopodia formation. Our results suggest that plectin anchoring invadopodia to vimentin IF scaffolds and stabilizes invadopodia, which is a critical molecular process for cancer cell invasion and extravasation for metastasis.  相似文献   

2.
The association and interaction of plectin (Mr 300,000) with intermediate filaments and filament subunit proteins were studied. Immunoelectron microscopy of whole mount cytoskeletons from various cultured cell lines (rat glioma C6, mouse BALB/c 3T3, and Chinese hamster ovary) and quick-frozen, deep-etched replicas of Triton X-100-extracted rat embryo fibroblast cells revealed that plectin was primarily located at junction sites and branching points of intermediate filaments. These results were corroborated by in vitro recombination studies using vimentin and plectin purified from C6 cells. Filaments assembled from mixtures of both proteins were extensively crosslinked by oligomeric plectin structures, as demonstrated by electron microscopy of negatively stained and rotary-shadowed specimens as well as by immunoelectron microscopy; the binding of plectin structures on the surface of filaments and cross-link formation occurred without apparent periodicity. Plectin's cross-linking of reconstituted filaments was also shown by ultracentrifugation experiments. As revealed by the rotary-shadowing technique, filament-bound plectin structures were oligomeric and predominantly consisted of a central globular core region of 30-50 nm with extending filaments or filamentous loops. Solid-phase binding to proteolytically degraded vimentin fragments suggested that plectin interacts with the helical rod domain of vimentin, a highly conserved structural element of all intermediate filament proteins. Accordingly, plectin was found to bind to the glial fibrillar acidic protein, the three neurofilament polypeptides, and skin keratins. These results suggest that plectin is a cross-linker of vimentin filaments and possibly also of other intermediate filament types.  相似文献   

3.
To map structural and functional epitopes of the cytomatrix protein plectin, a set of mAbs was prepared by immunization of mice. Using immunoblot analysis of plectin fragments obtained after limited digestion with various proteases, two groups of mAbs were distinguished. The epitopes of one group (1) were located on a 130-kD terminal segment of the plectin 300-kD polypeptide chain, whereas those of the other group (2) bound within a 40kD segment confined to a central domain of the polypeptide chain. Domains containing the epitopes of group 2 mAbs were shown to include in vitro phosphorylation sites for kinase A, whereas kinase C phosphorylation sites were found on the same terminal segment that contained group 1 mAb epitopes. Rotary shadowing EM of mAb (Fab fragment) -decorated plectin molecules at various states of aggregation, ranging from characteristic dumbbell-shaped single molecules to highly complex multimeric structures, revealed that the epitopes of group 1 as well as those of group 2 mAbs were located on plectin's roughly 200-nm long rod domain interlinking its two globular end domains. Epitopes of group 1 mAbs were localized within a region near the center of the rod, those of group 2 in more peripheral sections near the globular end domains. Solid-phase binding assays carried out in the presence of Fab fragments of mAbs demonstrated an interference of certain group 1 mAbs in the interactions of plectin with vimentin and lamin B. On the other hand, plectin's self-interaction was inhibited mainly by Fab fragments with epitopes in the peripheral rod domain (group 2 mAbs). Together, these results suggested that the molecular binding sites of plectin for vimentin and lamin B, as well as the phosphorylation sites for kinase C, were confined to a defined central section of plectin's rod domain. In addition, they suggest an involvement of peripheral rod sections in plectin self-association.  相似文献   

4.
Chemokine-induced polarization of lymphocytes involves the rapid collapse of vimentin intermediate filaments (IFs) into an aggregate within the uropod. Little is known about the interactions of lymphocyte vimentin with other cytoskeletal elements. We demonstrate that human peripheral blood T lymphocytes express plectin, an IF-binding, cytoskeletal cross-linking protein. Plectin associates with a complex of structural proteins including vimentin, actin, fodrin, moesin, and lamin B in resting peripheral blood T lymphocytes. During chemokine-induced polarization, plectin redistributes to the uropod associated with vimentin and fodrin; their spatial distribution indicates that this vimentin-plectin-fodrin complex provides a continuous linkage from the nucleus (lamin B) to the cortical cytoskeleton. Overexpression of the plectin IF-binding domain in the T cell line Jurkat induces the perinuclear aggregation of vimentin IFs. Plectin is therefore likely to serve as an important organizer of the lymphocyte cytoskeleton and may regulate changes of lymphocyte cytoarchitecture during polarization and extravasation.  相似文献   

5.
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.  相似文献   

6.
The adhesion of microvascular endothelial cells to their underlying basement membrane is important for the maintenance of vascular integrity. Most integrins function in endothelial cell adhesion by forming a transmembrane link between their basement membrane ligand and the actin microfilament cytoskeleton. The alpha 6 beta 4 laminin-binding integrin, however, associates with vimentin intermediate filaments (IFs) in microvascular endothelial cells and therefore is likely to uniquely contribute to the barrier function of the endothelium. In this study, we examined the regulation of alpha 6 beta 4-vimentin IF association. We first tested the requirement for alpha 6 beta 4-laminin interactions and actin microfilament assembly. We found that alpha 6 beta 4 associated with vimentin IFs when cells were adherent to either laminin 5 or fibronectin, indicating that this association can occur independent of alpha 6 beta 4-ligand interactions. Additionally, we found that alpha 6 beta 4 was associated with vimentin IFs prior to cell spreading, indicating that changes in the microfilament cytoskeleton associated with changes in cell shape are also not required. Thus, although the association of alpha 6 beta 4 with vimentin IFs may strengthen cell adhesion by providing endothelial cells with an additional transmembrane linkage between the basement membrane and the cytoskeleton, this association is not itself regulated by alpha 6 beta 4-mediated adhesion. Finally, we tested the role of plectin in the association of alpha 6 beta 4 with vimentin IFs. Plectin is known to bind in vitro to both IFs and the beta 4 cytoplasmic domain (beta 4 tail), suggesting that it may be important for this linkage. Therefore, we generated deletion mutants of the beta 4 tail and compared the ability of alpha 6 beta 4 containing these deletions to associate with vimentin IFs. We targeted the two regions of the beta 4 tail known to bind to plectin IN VITRO: the N-terminal and C-terminal plectin binding sites. We found that deletion of the N-terminal binding site inhibited the association of alpha 6 beta 4 with vimentin IFs. Thus, plectin-beta 4 tail interactions may play an important role in connecting alpha 6 beta 4 with vimentin IFs and may prove to be important targets in the regulation of this association in endothelial cells.  相似文献   

7.
R. Foisner  B. Feldman  G. Wiche 《Protoplasma》1988,145(2-3):120-128
Summary Plectin is a high Mr cytomatrix protein consisting of an elongated rod domain terminated by a globe at each end. Partial proteolysis of plectin by elastase, protease V 8 or trypsin and rotary shadowing electron microscopy of samples revealed mainly filamentous structures, steadily decreasing in length with digestion time. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of elastase- and protease V 8-treated samples revealed a number of fragments from Mr 300,000 to 100,000. These fragments most likely represented intact or large portions of plectin's rod domain, as they were immunoreactive with a monoclonal antibody specific for plectin rods. As shown by electron microscopy, centrifugation, and solid phase binding assays, intact as well as fragmented plectin self-associated via its globular domains; vimentin interaction, on the other hand, occurred via the rod domain. Thus, plectin molecules contain at least two structurally and functionally distinct domains.Abbreviations EGTA ethylene glycol bis (-aminoethylether) N,N N,N-tetraacetic acid - Mr molecular weight - PMSF phenylmethyl sulfonyl fluoride - SDS sodium dodecyl sulfate  相似文献   

8.
《The Journal of cell biology》1996,135(4):991-1007
By immunogold labeling, we demonstrate that "millipede-like" structures seen previously in mammalian cell cytoskeletons after removal of actin by treatment with gelsolin are composed of the cores of vimentin IFs with sidearms containing plectin. These plectin sidearms connect IFs to microtubules, the actin-based cytoskeleton and possibly membrane components. Plectin binding to microtubules was significantly increased in cells from transgenic mice lacking IFs and was reversed by microinjection of exogenous vimentin. These results suggest the existence of a pool of plectin which preferentially associates with IFs but may also be competed for by microtubules. The association of IFs with microtubules did not show a preference for Glu-tubulin. Nor did it depend upon the presence of MAP4 since plectin links were retained after specific immunodepletion of MAP4. The association of IFs with stress fibers survived actin depletion by gelsolin suggesting that myosin II minifilaments or components closely associated with them may play a role as plectin targets. Our results provide direct structural evidence for the hypothesis that plectin cross-links elements of the cytoskeleton thus leading to integration of the cytoplasm.  相似文献   

9.
Based on the finding that vimentin isolated and purified from cultured mammalian cells is heavily contaminated by neutral lipids, the binding of a series of radioactively labeled nonpolar lipids to pure, delipidated vimentin was investigated. Employing gel permeation chromatography of the complexes on Sephacryl S-300, cholesterol, cholesteryl fatty acid esters and mono-, di- and triglycerides were found to efficiently associate with vimentin. These compounds also showed a strong tendency to bind to vimentin filaments. While the non-alpha-helical head piece of vimentin did not interact with neutral lipids under the above assay conditions, the alpha-helical rod domain was highly active. When cholesterol or 1,2-dioleoyl-glycerol was incorporated into phospholipid vesicles, the affinity of the liposomes for vimentin filaments was considerably increased. However, in sucrose density gradient equilibrium centrifugation the filament-vesicle adducts were only stable when the liposomes contained negatively charged phospholipids. These results suggest that the association of intermediate filaments with lipid vesicles is initiated by interaction of the arginine-rich N-termini of their subunit proteins with the negatively charged vesicle surface and stabilized by partial insertion of the protein molecules into the lipid bilayer, particularly at those sites where immiscible, nonpolar lipids create defects in phospholipid packing. Very likely, nonpolar lipids play a significant role in the interaction of intermediate filaments with natural membrane systems.  相似文献   

10.
Single cardiac myocytes were isolated from hearts of 9 to 12-week-old rats by means of collagenase (100 U/ml). After assessment of their functional integrity they were processed for immunofluorescence microscopy of the cytoskeletal proteins tubulin, microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2), plectin, vimentin, and vinculin. Antibodies to tubulin decorated a delicate filamentous network that apparently was unrelated to any sarcomeric organization. The distribution of MAP-1 and MAP-2 was strikingly different from that of tubulin, as both antigens were confined to Z-line structures. These structures were also prominently stained by affinity-purified antibodies to plectin and a monoclonal antibody to vimentin. Co-distribution of plectin and vimentin was also observed at the former intercalated disk region of the heart cell. Anti-vinculin antibodies decorated an intricate meshwork consisting of delicate filaments with predominantly irregular orientation and occasional assembly into whorls. These immunolocalization data indicate that the cell shape and cytoskeletal architecture characteristic of cardiac myocytes in tissues is maintained in single isolated cells. Furthermore, intermediate filaments rather than microtubules seem to be instrumental in the preservation of cell morphology.  相似文献   

11.
Human heparanase. Purification, characterization, cloning, and expression.   总被引:30,自引:0,他引:30  
Heparan sulfate and heparan sulfate proteoglycans are present in the extracellular matrix as well as on the external cell surface. They bind various molecules such as growth factors and cytokines and modulate the biological functions of binding proteins. Heparan sulfate proteoglycans are also important structural components of the basement membrane. Heparanase is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this study, we report the purification of a human heparanase from an SV40-transformed embryonic fibroblast cell line WI38/VA13 by four sequential column chromatographies. The activity was measured by high speed gel permeation chromatography of the degradation products of fluorescein isothiocyanate-labeled heparan sulfate. The enzyme was purified to homogeneity, yielding a peptide with an apparent molecular mass of 50 kDa when analyzed by SDS-polyacrylamide gel electrophoresis. Using the amino acid sequences of the N-terminal and internal heparanase peptides, a cDNA coding for human heparanase was cloned. NIH3T3 and COS-7 cells stably transfected with pBK-CMV expression vectors containing the heparanase cDNA showed high heparanase activities. The homology search revealed that no homologous protein had been reported.  相似文献   

12.
Several mammalian cell lines propagated in suspension and monolayer culture and some normal and cancerous tissues from rat, hamster and cat were screened for the presence of the Ca 2+ activated protease specific for the intermediate-sized filament protein vimentin. Gel permeation chromatography on Sephacryl S-300 of postnuclear supernatants, and sucrose density gradient centrifugation of extracts from Triton X-100-resistant residual cell structures revealed the presence of the enzyme in all cells and tissues tested. Its apparent molecular weight amounted to 100 000. Except in the cases of a spontaneous rat lung tumour and a rat hepatocellular carcinoma induced by diethylnitrosamine, most of the enzyme was released into the postnuclear supernatant during cell or tissue extraction, indicating that it is of cytoplasmic origin. There was no correlation between the enzyme level and the vimentin content of cells and tissues. Rat and hamster liver as well as cat kidney, in which vimentin has not been detected by polyacrylamide gel electrophoresis, were relatively rich in the Ca 2+ activated protease. The experimental results point at the widespread, if not general, occurrence of the enzyme in mammalian cells.  相似文献   

13.
Plectin is a typical cytolinker protein that connects intermediate filaments to the other cytoskeletal filament systems and anchors them at membrane-associated junctional sites. One of the most important binding partners of plectin in fibroblasts is the intermediate filament subunit protein vimentin. Previous studies have demonstrated that vimentin networks are highly dynamic structures whose assembly and disassembly is accomplished stepwise via several intermediates. The precursor forms as well as polymerized (filamentous) vimentin are found in the cells in a dynamic equilibrium characterized by the turnover of the subunits within the polymer and the movement of the smaller precursors. To examine whether plectin plays a role in intermediate filament dynamics, we studied vimentin filament formation in plectin-deficient compared to wild-type fibroblasts using GFP-tagged vimentin. Monitoring vimentin and plectin in spreading and dividing cells, we demonstrate that plectin is associated with vimentin from the early stages of assembly and is required for vimentin motility as well as for the stepwise formation of stable filaments. Furthermore, plectin prevents vimentin networks from complete disassembly during mitosis, facilitating the rebuilding of the intermediate filament network in daughter cells.  相似文献   

14.
Vimentin, type III intermediate filament, has stage-specific localization in the Sertoli cell. In the rat, during stages I–V and XI–XIV of the seminiferous epithelium, vimentin is localized in the perinuclear area with filaments projecting into the apical region toward the developing germ cells. These filaments decrease in length at stages VI–VII with perinuclear staining in stages VIII–IX, when spermiation occurs. Our earlier studies following 17β-estradiol treatment to adult male rats demonstrated an increase in germ cell apoptosis, spermiation failure and disruption of Sertoli cell microfilaments and microtubules. The present study was undertaken to determine the stage-specific distribution of vimentin and its involvement in spermiation failure and germ cell apoptosis. Immunofluorescence studies revealed that in contrast to the perinuclear localization with small extensions in control stages VII–IX, long extensions radiating apically to the spermatids in deep recess were observed in the treated group. Immunoprecipitation studies showed marked absence of phosphorylated vimentin in stages VII–VIII in the treated group. Further, localization of plectin, cytoskeletal linker protein, showed decrease in all the stages of spermatogenesis following estradiol treatment. Interestingly, for the first time the localization of plectin in the tubulobulbar complex was observed. In conclusion, the study suggests that estradiol treatment leads to an effect on vimentin phosphorylation, which could have inhibited the disassembly of vimentin leading to retention of apical projection in stages VII–VIII. These effects could be presumably due to a decrease in plectin, affecting the reorganization of vimentin and therefore the apical movement of spermatids, leading to spermiation failure.  相似文献   

15.
The distribution of plectin in the cytoplasm of Rat1 and glioma C6 cells was examined using a combination of double and triple immunofluorescence microscopy and interference reflection microscopy. In cells examined shortly after subcultivation (less than 48 h), filamentous networks of plectin structures, resembling and partially colocalizing with vimentin filaments, were observed as reported in previous studies. In cells kept attached to the substrate without growth for periods of 72 h to 8 days (stationary cultures), thick fibrillary plectin structures were observed. These structures were located at the end of actin filament bundles and showed co-distribution with adhesion plaques (focal contacts), vinculin, and vimentin. Only relatively large adhesion plaques (dash-like contacts) were decorated by antibodies to plectin, smaller dot-like contacts at the cell edges remained undecorated. Moreover, in stationary Rat1 cells plectin structures were found to be predominantly colocalized with actin stress fibers. However, after treatment of such cells with colcemid, plectin's distribution changed dramatically. The protein was no longer associated with actin structures, but was distributed diffusely throughout the cytoplasm. After a similar treatment with cytochalasin B, plectin's association with stress fibers again was completely abolished, although stress fibers were still present. The association of plectin with focal contact-associated intermediate filaments was demonstrated also by immunogold electron microscopy of quick-frozen, deep-etched replicas of rat embryo fibroblasts. These data confirm previous reports suggesting a relationship between intermediate filaments on the one hand, and actin stress fibers and their associated plasma membrane junctional complexes, on the other. Furthermore, the data establish plectin as a novel component of focal contact complexes and suggest that plectin plays a role as mediator between intermediate filaments and actin filaments.  相似文献   

16.
A new membrane bound protease has been identified in bovine hypothalamic neurosecretory granules using synthetic substrates that we prepared based on the sequence in pro-gonadotropin-releasing hormone protein that overlaps gonadotropin-releasing hormone and gonadotropin-associated peptide (thought to be prolactin-releasing hormone-inhibiting hormone). The enzyme was solubilized from neurosecretory granules using the detergent Triton X-100 and was further purified by high-performance gel permeation liquid chromatography. The enzyme hydrolyzes the Arg-2-naphthylamide (NA) bond of benzoyl(Bz)-Gly-Leu-Arg-Pro-Gly-Gly-Lys-Arg-2-NA which contains two likely processing sites, Arg-Pro and Lys-Arg. On the basis of the ratio of Vmax to Km as a measure of substrate specificity, Bz-Gly-Leu-Arg-Pro-Gly-Gly-Lys-Arg-2-NA is about 50-fold better than Bz-Gly-Gly-Lys-Arg-2-NA. Bz-Leu-Arg-2-NA and Bz-Gly-Leu-Arg-Pro-Gly-Gly are not hydrolyzed. The pH optimum for hydrolysis is 7.2 (Bz-Gly-Gly-Lys-Arg-2-NA substrate). As determined by gel permeation chromatography, the apparent molecular weight of the enzyme depends on the chromatography conditions; in the absence of NaCl, the Mr is approximately equal to 160,000 but is approximately equal to 80,000 if NaCl is included in the eluting buffer. After high-performance gel permeation liquid chromatography, the peak fraction containing the enzyme was lyophilized and then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis; silver staining revealed a single protein band, Mr approximately equal to 70,000.  相似文献   

17.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

18.
Plectin, a widespread and abundant cytoskeletal cross-linking protein, serves as a target for protein kinases throughout the cell cycle, without any significant variation in overall phosphorylation level. One of the various phosphorylation sites of the molecule was found to be phosphorylated preferentially during mitosis. By in vivo phosphorylation of ectopically expressed plectin domains in stably transfected Chinese hamster ovary cells, this site was mapped to the C-terminal repeat 6 domain of the polypeptide. The same site has been identified as an in vitro target for p34cdc2 kinase. Mitosis-specific phosphorylation of plectin was accompanied by a rearrangement of plectin structures, changing from a filamentous, largely vimentin-associated state in interphase to a diffuse vimentin-independent distribution in mitosis as visualized by immunofluorescence microscopy. Subcellular fractionation studies showed that in interphase cells up to 80% of cellular plectin was found associated with an insoluble cell fraction mostly consisting of intermediate filaments, while during mitosis the majority of plectin (> 75%) became soluble. Furthermore, phosphorylation of purified plectin by p34cdc2 kinase decreased plectin's ability to interact with preassembled vimentin filaments in vitro. Together, our data suggest that a mitosis-specific phosphorylation involving p34cdc2 kinase regulates plectin's cross-linking activities and association with intermediate filaments during the cell cycle.  相似文献   

19.
Structure and hydrodynamic properties of plectin molecules   总被引:15,自引:0,他引:15  
Plectin is a cytoskeletal, high molecular weight protein of widespread and abundant occurrence in cultured cells and tissues. To study its molecular structure, the protein was purified from rat glioma C6 cells and subjected to chemical and biophysical analyses. Plectin's polypeptide chains have an apparent molecular weight of 300,000, as shown by one-dimensional sodium dodecyl sulfate/polyacrylamide electrophoresis. Cross-linking of non-denatured plectin in solution with dimethyl suberimidate and electrophoretic analyses on sodium dodecyl sulfate/agarose gels revealed that the predominant soluble plectin species was a molecule of 1200 X 10(3) Mr consisting of four 300 X 10(3) Mr polypeptide chains. Hydrodynamic properties of plectin in solution were obtained by sedimentation velocity centrifugation and high-pressure liquid chromatography analysis yielding a sedimentation coefficient of 10 S and a Stokes radius of 27 nm. The high f/fmin ratio of 4.0 indicated a very elongated shape of plectin molecules and an axial ratio of about 50. Shadowing and negative staining electron microscopy of plectin molecules revealed multiple domains: a rigid rod of 184 nm in length and 2 nm in diameter, and two globular heads of 9 nm diameter at each end of the rod. Circular dichroism spectra suggested a composition of 30% alpha-helix, 9% beta-structure and 61% random coil or aperiodic structure. The rod-like shape, the alpha-helix content as well as the thermal transition within a midpoint of 45 degrees C and the transition enthalpy (168 kJ/mol) of secondary structure suggested a double-stranded, alpha-helical coiled coil rod domain. Based on the available data, we favor a model of native plectin as a dumb-bell-like association of four 300 X 10(3) Mr polypeptide chains. Electron microscopy and turbidity measurements showed that plectin molecules self-associate into various oligomeric states in solutions of nearly physiological ionic strength. These interactions apparently involved the globular end domains of the molecule. Given its rigidity and elongated shape, and its tendency towards self-association, plectin may well be an interlinking element of the cytoskeleton that may also form a network of its own.  相似文献   

20.
The transforming protein of polyomavirus, middle T antigen, is associated with cellular membranes. We have examined the subcellular location of the middle T antigen in two different cell types by fractionation and detergent phase partitioning. Middle T antigen expressed in human cells by a recombinant adenovirus was detected primarily in the membrane skeleton. Sucrose gradient fractionation revealed that the middle T antigen was associated with complexes with molecular weights of 500,000 to 1,000,000. Several markers for cytoskeleton cofractionate with these complexes, including actin, tubulin, and vimentin. Electron micrographs of membrane skeleton prepared from cells expressing middle T antigen demonstrated that this material contained primarily fibrous structures and was clearly devoid of bilayer membranes. These structures were distinct from the filamentous structures observed in fractions enriched for cytoskeleton. Consistent with a role for membrane skeleton localization in transformation, middle T antigen was detected exclusively in fractions enriched for membrane skeleton in middle T antigen-transformed Rat-2 cells. Our results may resolve the apparent difference between middle T antigen localization as determined by immunomicroscopy and that determined by subcellular fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号