首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition.  相似文献   

2.
Weiser S  Miu J  Ball HJ  Hunt NH 《Cytokine》2007,37(1):84-91
Changes to the cerebral microvasculature are evident during cerebral malaria (CM). Activation of the endothelium is likely to be due to the actions of cytokines, circulating levels of which are elevated during CM. Endothelial cells are known to up-regulate the expression of cellular adhesion molecules, which can lead to cellular sequestration and obstruction of vessels. However, it is unknown whether cytokines synergise in the up-regulation of the adhesion molecules involved in CM. In this study, the mRNA and/or protein expression of the adhesion molecules vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin and E-Selectin were examined in a mouse brain endothelial cell line. Endothelial cells were stimulated with interferon-gamma (IFN-gamma), tumour necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha), alone or in combination. The expression of ICAM-1, VCAM-1, P-selectin and E-Selectin mRNA in mouse brain endothelial cells by TNF and/or LT-alpha was found to be significantly enhanced in the presence of IFN-gamma. The same synergistic effect was found when analyzing ICAM-1 protein expression in cytokine stimulated mouse brain endothelial cells. The findings show that cytokines can synergise to influence gene expression and protein expression in a mouse brain endothelial cell line.  相似文献   

3.
Platelets have recently been shown to accumulate in brain microvessels of patients with cerebral malaria and to modulate the binding of Plasmodium falciparum-infected red cells to human brain endothelium in vitro. In the present study we used a platelet-endothelial cell coculture model to investigate the mechanisms by which platelets modify the function of human brain microvascular endothelial cells (HBEC). Platelets were found to have a proapoptotic effect on TNF-activated HBEC, and this was contact-dependent, as inhibiting platelet binding prevented endothelial cell killing. We also showed that the supernatants of thrombin-activated platelets killed TNF-stimulated HBEC and that TGF-beta1 was the main molecule involved in endothelial cell death, because its inhibition completely abrogated the activated-platelet supernatant effect. Our data illustrate another aspect of the duality of TGF-beta1 in malaria and may provide new insights into the pathogenesis of cerebral malaria.  相似文献   

4.
Brain lesions of cerebral malaria (CM) are characterised by a sequestration of Plasmodium falciparum-parasitised red blood cells (PRBC), leucocytes and platelets within brain microvessels, by an excessive release of pro-inflammatory cytokines as well as by disruption of the blood-brain barrier (BBB). We evaluated the possibility that PRBC and platelets interact and induce functional alterations in brain endothelium. Using an in vitro model of endothelial lesion, we showed that platelets can act as bridges between PRBC and endothelial cells (EC) allowing the binding of PRBC to endothelium devoid of cytoadherence receptors. Furthermore, platelets potentiated the cytotoxicity of PRBC for brain EC by inducing an alteration of the integrity of their monolayer and increasing their apoptosis. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. Another aspect of inflammatory and infectious diseases is that they often lead to activation of vascular and blood cells. Such activation results in an enhanced vesiculation, i.e. the release of circulating microparticles (MP). We thus explored plasma levels of endothelial MP in Malawian children with malaria. Plasma MP numbers were markedly increased on admission only in patients with severe malaria complicated with coma. Using the experimental mouse model of CM, we evaluated the pathogenic implications of MP using genetically deficient mice in which the capacity to vesiculate is impaired. Such mice, lacking the ABCA-1 gene, upon infection by Plasmodium berghei ANKA, showed complete resistance to CM. When purified from infected susceptible animals, MP were able to reduce normal plasma clotting time and to significantly enhance tumour necrosis factor release from na?ve macrophages. Altogether these data provide a novel insight into the pathogenic mechanisms leading to the neurological syndrome. The finding that ABCA-1 gene deletion confers complete protection against cerebral pathology, linked to an impaired MP production, provides new potential targets for therapeutic amelioration of severe malaria.  相似文献   

5.
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood.Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9.One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14).With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.  相似文献   

6.
异种移植排斥反应的主要特征为内皮细胞发生Ⅱ型激活.引起黏附分子、细胞因子和前促凝分子等基因高表达.造成血管收缩、白细胞黏附、激活、聚集和血栓形成.最终导致内皮细胞凋亡。保护基因HO-1通过抑制前炎症反应及免疫调抑作用以保护异种移植器官。因此。通过构建含剪切的野生型大鼠HO-1 cDNA的表达型质粒.用DOTAP包裹转入HUVEC中表达。测定表达量及表达产物活性;采用TNF-α诱导细胞凋亡。以及Heme和SnPP分别刺激细胞。诱导和抑制细胞内HO-1表达量.流式细胞仪测定细胞凋亡率,明确HO一1的抗细胞凋亡作用。结果显示HO-1在HUVEC中高度表达。活力为对照组5倍;TNF-α诱导细胞凋亡。但Heme处理后细胞凋亡率下降至20%以下。而SnPP处理后细胞凋亡率显著上升,最高达到95%以上。并且HO-1基因表达抑制时细胞凋亡率是诱导时的5—20倍。本实验表明Heme处理后HO-1表达上调。具有显著抗细胞凋亡作用。细胞凋亡率与HO-1表达量呈负相关,提示HO-1通过抑制细胞凋亡。对细胞有保护作用。  相似文献   

7.
8.
Following Gram-negative bacterial infection there is a reduction in matrix-producing cells. The goal of the present study was to examine the apoptotic effects of lipopolysaccharide (LPS) on fibroblastic cells and to investigate the role that the host response plays in this reaction. This was accomplished in vivo by subcutaneous inoculation of LPS in wild type and TNFR1(-/-)R2(-/-) mice. The direct effects of LPS on fibroblast apoptosis was studied in vitro with normal diploid human fibroblasts. The results indicate that LPS in vivo induces apoptosis of fibroblasts. By RNA profiling we demonstrated that LPS stimulates global expression of apoptotic genes and down-regulates anti-apoptotic genes. Fluorometric studies demonstrated that LPS in vivo significantly increased caspase-8 and caspase-3 activity and by use of specific inhibitors, the activation of caspase-3 was shown to be initiated by caspase-8 with no contribution from caspase-9. In vitro studies demonstrated that LPS did not induce apoptosis of fibroblasts, whereas tumor necrosis factor (TNF) did. In addition, the pattern of apoptotic gene expression induced by TNF in vitro was nearly identical to that induced by LPS in vivo, as measured by RNase protection assay. Moreover, pre-treatment of cells with TNF greatly enhanced apoptosis induced by a second stimulation with TNF 24 h later, suggesting that the global induction of pro-apoptotic genes was functionally significant. Thus, LPS acts to modulate the expression of a large number of genes that favor apoptosis of fibroblastic cells that is dependent upon activation of caspase-8 and is largely mediated by TNF.  相似文献   

9.
10.
11.
Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.  相似文献   

12.
13.
Recombinant adenovirus (Ad) gene transfer vectors are effective at transferring exogenous genes to a variety of cells and tissue types both in vitro and in vivo. However, in the process of gene transfer, the Ad vectors induce the expression of target cell genes, some of which may modify the function of the target cell and/or alter the local milieu. To develop a broader understanding of Ad vector-mediated induction of endogenous gene expression, genes induced by first-generation E1(-) E4(+) Ad vectors in primary human umbilical vein endothelial cells were identified by cDNA subtraction cloning. The identified cDNAs included signaling molecules (lymphoid blast crisis [LBC], guanine nucleotide binding protein alpha type S [Galpha-S], and mitogen kinase [MEK5]), calcium-regulated/cytoskeletal proteins (calpactin p11 and p36 subunits, vinculin, and spinocerebellar ataxia [SCA1]), growth factors (insulin-like growth factor binding protein 4 and transforming growth factor beta2), glyceraldehyde-6-phosphate dehydrogenase, an expressed sequence tag, and a novel cDNA showing homology to a LIM domain sequence. Two- to sevenfold induction of the endogenous gene expression was observed at 24 h postinfection, and induction continued up to 72 h, although the timing of gene expression varied among the identified genes. In contrast to that observed in endothelial cells, the Ad vector-mediated induction of gene expression was not found following Ad vector infection of primary human dermal fibroblasts or human alveolar macrophages. Empty Ad capsids did not induce endogenous gene expression in endothelial cells. Interestingly, additional deletion of the E4 gene obviated the upregulation of genes in endothelial cells by the E1(-) E3(-) Ad vector, suggesting that genes carried by the E4 region play a central role in modifying target cell gene expression. These findings are consistent with the notion that efficient transfer of exogenous genes to endothelial cells by first-generation Ad vectors comes with the price that these vectors also induce the expression of a variety of cellular genes.  相似文献   

14.
15.
16.
17.
18.
Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar. We then isolated, purified and cultured primary endothelial cells from aspirated subcutaneous tissue of patients with CM (EC(CM) ) or UM (EC(UM) ) and confirmed the identity of the cells before analysis. Upon TNF stimulation in vitro, EC(CM) displayed a significantly higher capacity to upregulate ICAM-1, VCAM-1 and CD61 and to produce IL-6 and MCP-1 but not RANTES compared with EC(UM) . The shedding of endothelial microparticles, a recently described parameter of severity in CM, and the cellular level of activated caspase-3 were both significantly greater in EC(CM) than in EC(UM) . These data suggest that inter-individual differences in the endothelial inflammatory response to TNF may be an additional factor influencing the clinical course of malaria.  相似文献   

19.
20.
TNF-alpha plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-alpha induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-alpha on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-alpha cytotoxicity, presumably by NF-kappaB mediated induction of protective genes. However, the cytoprotective genes involved in NF-kappaB dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-alpha inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-alpha-induced expression of the RNA binding protein p54(nrb) and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-alpha mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, p21(cip1) and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-alpha induced gene expression patterns mediating the prosurvival effect of TNF-alpha in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号