首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptide hormone INSL3 is uniquely produced by the fetal testis to promote the transabdominal phase of testicular descent. Because it is fetal sex specific, and is present in only very low amounts in the maternal circulation, INSL3 acts as an ideal biomarker with which to monitor the movement of fetal hormones within the pregnant uterus of a polytocous species, the pig. INSL3 production by the fetal testis begins at around GD30. At GD45 of the ca. 114 day gestation, a time at which testicular descent is promoted, INSL3 evidently moves from male to female allantoic compartments, presumably impacting also on the female fetal circulation. At later time-points (GD63, GD92) there is less inter-fetal transfer, although there still appears to be significant INSL3, presumably of male origin, in the plasma of female fetuses. This study thus provides evidence for substantial transfer of a peptide hormone between fetuses, and probably also across the placenta, emphasizing the vulnerability of the fetus to extrinsic hormonal influences within the uterus.  相似文献   

2.
Insulin-like 3 (INSL3) is a novel circulating peptide hormone that is produced by testicular Leydig cells and ovarian thecal and luteal cells. In males, INSL3 is responsible for testicular descent during foetal life and suppresses germ cell apoptosis in adult males, whereas in females, it causes oocyte maturation. Antagonists of INSL3 thus have significant potential clinical application as contraceptives in both males and females. Previous work has shown that the INSL3 receptor binding region is largely confined to the B-chain central α-helix of the hormone and a conformationally constrained analogue of this has modest receptor binding and INSL3 antagonist activity. In the present study, we have employed and evaluated several approaches for increasing the α-helicity of this peptide in order to better present the key receptor binding residues and increase its affinity for the receptor. Analogues of INSL3 with higher α-helicity generally had higher receptor binding affinity although other structural considerations limit their effectiveness.  相似文献   

3.
Reproductive biology of the relaxin-like factor (RLF/INSL3)   总被引:11,自引:0,他引:11  
The relaxin-like factor (RLF), which is the product of the insulin-like factor 3 (INSL3) gene, is a new circulating peptide hormone of the relaxin-insulin family. In male mammals, it is a major secretory product of the testicular Leydig cells, where it appears to be expressed constitutively but in a differentiation-dependent manner. In the adult testis, RLF expression is a good marker for fully differentiated adult-type Leydig cells, but it is only weakly expressed in prepubertal immature Leydig cells or in Leydig cells that have become hypertrophic or transformed. It is also an important product of the fetal Leydig cell population, where it has been demonstrated using knockout mice to be responsible for the second phase of testicular descent acting on the gubernaculum. INSL3 knockout mice are cryptorchid, and in estrogen-induced cryptorchidism, RLF levels in the testis are significantly reduced. RLF is also made in female tissues, particularly in the follicular theca cells of small antral follicles and in the corpus luteum of the cycle and pregnancy. The ruminant ovary has a very high level of RLF expression, and analysis of primary cultures of ovarian theca-lutein cells indicated that, as in the testis, expression is probably constitutive but differentiation dependent. Female INSL3 knockout mice have altered estrous cycles, where RLF may be involved in follicle selection, an idea strongly supported by observations on bovine secondary follicles. Recently, a novel 7-transmembrane domain receptor (LGR8 or Great) has been tentatively identified as the RLF receptor, and its deletion in mice leads also to cryptorchidism.  相似文献   

4.
5.
Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3−RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays.  相似文献   

6.
Concentrations of prostaglandins in fetal and maternal plasma during mid-pregnancy and fetal plasma at term have been measured. Fetal levels at both gestations were higher than found in maternal blood. The stable chemical breakdown product of prostacyclin, 6-keto-prostaglandin F1∝, was consistently considerably higher in the fetus during mid-pregnancy compared with at term. Prostaglandin F levels were also significantly higher in mid-pregnancy, though there was no difference in the concentrations of the major circulating prostaglandin F metabolite, PGFM. Concentrations of prostaglandin E were similar at the two stages of pregnancy. The physiological significance of these findings is discussed.  相似文献   

7.
It has been shown in some species that fetal testes produce testosterone early in gestation. This study investigated the possibility that fetal testosterone may be reflected in maternal serum levels in the Asian elephant (Elephas maximus). Weekly serum samples were collected from seventeen pregnant captive Asian elephants and analyzed via radioimmunoassay (RIA) for total testosterone levels. Nine of the cows carried male fetuses and eight carried female fetuses. A non-random pattern over time (P<0.01) was observed in cows carrying either a male or female fetus. Mean maternal serum total testosterone was significantly higher in cows carrying male versus female fetuses (P<0.01). Mean trimester values indicate that first trimester values are not significantly different among male versus female groups. The second and third trimester values of cows carrying male fetuses were higher than cows carrying female fetuses, (P<0.01 and <0.05, respectively). The results of this study show that it is possible via RIA of maternal serum for total testosterone to determine the gender of calves during gestation.  相似文献   

8.
Insulin-like peptide 3 (INSL3) is an insulin superfamily peptide hormone, primarily expressed in the testes and playing a key role in the fetus testes descent and suppression of male germ cell apoptosis. Insulin-degrading enzyme (IDE) is a zinc-metalloprotease, responsible for in vivo degradation of insulin, Aβ, and other peptide hormones. IDE has high expression level in the testes, implying it might be involved in INSL3 turnover in vivo. In present work, we studied in vitro degradation of INSL3 by IDE. Recombinant human IDE degraded human INSL3, but its degradation rate for INSL3 is more than a magnitude lower than that for insulin. However, IDE bound INSL3 and insulin with almost same affinity. IDE cleaved the peptide bond between B26R and B27W of INSL3, and released a pentapeptide, WSTEA, from the C-terminal of B-chain. Our present work suggested that IDE might play a role in INSL3 degradation in vivo.  相似文献   

9.
Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones, but the secretory responses to LH are different: INSL3 secretion increases slowly and may reflect the LH dependent differentiated status of Leydig cells, whereas testosterone response to LH is immediate. Testosterone contributes to the involution of the suspensory ligament and to the inguinoscrotal phase of the descent, while INSL3 acts mainly in transabdominal descent by stimulating the growth of the gubernaculum. INSL3 acts through a G-protein coupled receptor LGR8. In the absence of either INSL3 or LGR8 mice remain cryptorchid. In humans only few INSL3 mutations have been described, whereas LGR8 mutations may cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen–estrogen ratio may disturb testicular descent. Environmental effects changing the ratio can thereby influence cryptorchidism rate. Estrogens and anti-androgens cause cryptorchidism in experimental animals. In our cohort study we found higher LH/testosterone ratios in 3-month-old cryptorchid boys than in normal control boys, suggesting that cryptorchid testes are not cabable of normal hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen–estrogen ratio) may be involved in cryptorchidism.  相似文献   

10.
1. Maternal calcium homeostasis during pregnancy is strained due to fetal mineral requirements for bone formation. 2. In most species, the mother adjusts to the mineral requirements of the fetus with alterations in her metabolism of vitamin D that include a decrease in plasma 25-(OH)D levels and an increase in circulating levels of the hormone, 1,25-(OH)2D. 3. Plasma 25-(OH)D and 1,25-(OH)2D levels in adult male, adult female and pregnant sheep were measured by specific radioreceptor binding assays. 4. Pregnancy did not alter circulating levels of 25-(OH)D or 1,25-(OH)2D in the sheep. 5. The pregnant ewe differs from all species studied to date in that maternal plasma 1,25-(OH)2D levels do not rise as a result of pregnancy.  相似文献   

11.
GREAT/LGR8 is the only receptor for insulin-like 3 peptide   总被引:11,自引:0,他引:11  
During male development testes descend from their embryonic intraabdominal position into the scrotum. Two genes, encoding the insulin-like 3 peptide (INSL3) and the GREAT/LGR8 G protein-coupled receptor, control the differentiation of gubernaculum, the caudal genitoinguinal ligament critical for testicular descent. It was established that the INSL3 peptide activates GREAT/LGR8 receptor in vitro. Mutations of Insl3 or Great cause cryptorchidism (undescended testes) in mice. Overexpression of the transgenic Insl3 causes male-like gubernaculum differentiation, ovarian descent into lower abdominal position, and reduced fertility in females. To address the question whether Great deletion complements the mutant female phenotype caused by the Insl3 overexpression, we have produced Insl3 transgenic mice deficient for Great. Such females had a wild-type phenotype, demonstrating that Great was the only cognate receptor for Insl3 in vivo. We have established that pancreatic HIT cells, transfected with the INSL3 cDNA, produce functionally active peptide. Analysis of five INSL3 mutant variants detected in cryptorchid patients showed that P49S substitution renders functionally compromised peptide. Therefore, mutations in INSL3 might contribute to the etiology of cryptorchidism. We have also showed that synthetic insulin-like peptides (INSL4 and INSL6) were unable to activate LGR7 or GREAT/LGR8.  相似文献   

12.
13.
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.  相似文献   

14.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the insulin/relaxin superfamily, which mediates testes descent in the male fetus, and suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the leucine-rich repeat-containing G-protein coupled receptor RXFP2. In a previous work, we prepared mature two-chain INSL3 by recombinant expression of a designed single-chain precursor in Escherichia coli and subsequent in vitro maturation. To establish a convenient high throughput receptor-binding assay for screening novel RXFP2 agonists or antagonists, in the present study we designed and recombinantly prepared a fully active easily-labeled INSL3 analog. Due to presence of a single primary amine moiety, the easily-labeled analog was conveniently mono-labeled by a DTPA/Eu3+-moiety at the A-chain N-terminus through reacting with excess modification reagent in a simple one-step procedure. The DTPA/Eu3+-labeled INSL3 analog bound receptor RXFP2 with high affinity and low non-specific binding. Using this non-radioactive tracer, we established a high throughput cell-based receptor-binding assay for screening of novel RXFP2 agonists or antagonists in future studies.  相似文献   

15.
Weights of the gravid uterus and fetus as well as the fetal measurements were determined at slaughter for 107 Bos taurus cows grazed on improved pastures and for 70 Bos indicus cows grazed on native pastures in northern Australia. The stage of gestation was assessed from palpation per rectum in early-to-mid gestation and at slaughter and from fetal development characteristics at slaughter. The age and breed of the cow and the sex of the fetus did not significantly affect any of the uterine components or fetal measurements. Growth curves had dominant, positive linear components but negative quadratic ones, which improved the fit, particularly for the later stages of gestation. Uterine components and fetal measurements were highly correlated (0.94 to 0.99). For Bos taurus cows, there were higher estimates at birth for weights of the gravid uterus and the fetus, but estimates for other fetal measurements were similar to those for Bos indicus cows. Major fetal growth occurred during the third trimester, with the length of the foreleg tending to change relatively slowly and the head width quite fast during the first trimester. Correction factors for cow liveweight to adjust to commonality for non-pregnancy were 5, 7, 10, 14, 20, 29, 43 and 65 kg for Bos taurus and 2, 4, 6, 10, 15, 23, 35 and 51 kg for Bos indicus at 2 to 9 months of gestation.  相似文献   

16.
The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.  相似文献   

17.
Environmental oestrogens (EEs) as environmental pollutants have been paid much attention due to their impact on congenital malformation of male genitourinary system. Exposure to EEs for prolonged time could hinder testicular descent and cause testicular dysgenesis syndrome. Therefore, it is urgent to understand the mechanisms by which EEs exposure disrupt testicular descent. In this review, we summarize recent advances in our understanding of the process of testicular descent, which is regulated by intricate cellular and molecular networks. Increasing numbers of the components of these networks such as CSL and INSL3 are being identified, highlighting that testicular descent is a highly orchestrated process that is essential to human reproduction and survival. The exposure to EEs would lead to the imbalanced regulation of the networks and cause testicular dysgenesis syndrome such as cryptorchidism, hypospadias, hypogonadism, poor semen quality and testicular cancer. Fortunately, the identification of the components of these networks provides us the opportunity to prevent and treat EEs induced male reproductive dysfunction. The pathways that play an important role in the regulation of testicular descent are promising targets for the treatment of testicular dysgenesis syndrome.  相似文献   

18.
During male development, the testes move from a high intraabdominal position and descend into the scrotum. The gubernaculum, an inguinoscrotal ligament connecting the testis to the lower abdomen, is believed to play a critical role in this process. The first stage of testicular descent is controlled by insulin like3 hormone (INSL3), produced in testicular Leydig cells. Deletion of Insl3 or its receptor, Rxfp2, in mice causes cryptorchidism. We produced Cre/loxP regulated shRNA transgenic mice targeting RXFP2 expression. We have shown that the transgene was able to reduce Rxfp2 gene expression and thus behaved as a hypomorphic allele of Rxfp2. Variable degrees of uni- and bilateral cryptorchidism was detected in males with the activated shRNA transgene on an Rxfp2+/- background. Conditional suppression of Rxfp2 in the gubernaculum led to cryptorchidism. Gene expression analysis of a mutant cremasteric sac using Illumina microarrays indicated abnormal expression of a significant number of genes in Wnt/β-catenin and Notch pathways. We have demonstrated profound changes in the expression pattern of β-catenin, Notch1, desmin, and androgen receptor (AR), in Rxfp2-/- male embryos, indicating the role of INSL3 in proliferation, differentiation, and survival of specific cellular components of the gubernaculum. We have shown that INSL3/RXFP2 signaling is essential for myogenic differentiation and maintenance of AR-positive cells in the gubernaculum. Males with the deletion of β-catenin or Notch1 in the gubernacular ligament demonstrated abnormal development. Our data indicates that β-catenin and Notch pathways are potential targets of INSL3 signaling during gubernacular development.  相似文献   

19.
Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the “maternal immune activation” model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior.  相似文献   

20.
Cholesterol is necessary for the proper growth and development of the fetus. Consequently, disruptions in cholesterol biosynthesis lead to abnormal fetal development. It has been shown that in cells exposed to polyunsaturated fatty acids (PUFA), the expressions of genes and activities of enzymes involved in cholesterol synthesis are reduced. Similarly, we found that adult male hamsters fed PUFA-enriched diets had an approximately 60% reduction in in vivo hepatic sterol synthesis rates. If fetal tissues respond to PUFA in the same manner as do adult livers, then maternal dietary PUFA could lead to a reduction in fetal sterol synthesis rates and possibly abnormal development. To investigate the impact of maternal dietary fatty acids on fetal sterol synthesis rates, female hamsters were fed diets enriched in various fatty acids before and throughout gestation. In vivo sterol synthesis rates were measured in fetuses at mid- and late gestation. At both gestational stages, dietary PUFA had no effect on fetal sterol synthesis rates. This lack of effect was not a consequence of a lack of PUFA enrichment in fetal fatty acids or the lack of PUFA receptor expression in the fetus. We hypothesize that the fetus may experience a dysregulation of sterol synthesis as the result of the fetus being in a negative sterol balance; the PUFA-induced suppression of sterol synthesis in the adult male hamster liver was ablated by creating a net negative sterol balance across the adult hepatocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号