首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The neutrophil is of undoubted importance in lung inflammation after exposure to LPS. We have shown recently that systemic inhibition of JNK decreased neutrophil recruitment to the lung after exposure to LPS, although the mechanisms underlying this inhibition are incompletely understood. As plasminogen activator inhibitor-1 (PAI-1) accentuates cell migration, with JNK activation recently shown to up-regulate PAI-1 expression, this suggested that systemic JNK inhibition may down-regulate LPS-induced pulmonary neutrophil recruitment through a decrease in PAI-1 expression. We show in this study that exposure of mice to aerosolized LPS increased PAI-1 expression in the lung and alveolar compartment, which was decreased by pretreatment with the JNK inhibitor SP600125. Exogenous, intratracheally administered PAI-1 prevented the inhibition of pulmonary neutrophil recruitment in the setting of systemic JNK inhibition, thereby suggesting a role for PAI-1 in the JNK-mediated pathway regulating LPS-induced neutrophil recruitment. In addition, PAI-1(-/-) mice had a decrease in neutrophil recruitment to the alveolar compartment after exposure to LPS, compared with wild-type controls, further suggesting a role for PAI-1 in LPS-induced lung inflammation. An increase in the intravascular level of KC is a likely mechanism for the inhibition of pulmonary neutrophil recruitment after LPS exposure in the setting of decreased PAI-1 expression, as systemic KC levels after exposure to LPS were increased in PAI-1-deficient mice and in mice pretreated with SP600125, with augmentation of intravascular KC levels inhibiting neutrophil recruitment to the lung after exposure to LPS.  相似文献   

3.
IL-17A (IL-17) is the signature cytokine produced by Th17 cells and has been implicated in host defense against infection and the pathophysiology of autoimmunity and cardiovascular disease. Little is known, however, about the influence of IL-17 on endothelial activation and leukocyte influx to sites of inflammation. We hypothesized that IL-17 would induce a distinct pattern of endothelial activation and leukocyte recruitment when compared with the Th1 cytokine IFN-γ. We found that IL-17 alone had minimal activating effects on cultured endothelium, whereas the combination of TNF-α and IL-17 produced a synergistic increase in the expression of both P-selectin and E-selectin. Using intravital microscopy of the mouse cremaster muscle, we found that TNF-α and IL-17 also led to a synergistic increase in E-selectin-dependent leukocyte rolling on microvascular endothelium in vivo. In addition, TNF-α and IL-17 enhanced endothelial expression of the neutrophilic chemokines CXCL1, CXCL2, and CXCL5 and led to a functional increase in leukocyte transmigration in vivo and CXCR2-dependent neutrophil but not T cell transmigration in a parallel-plate flow chamber system. By contrast, endothelial activation with TNF-α and IFN-γ preferentially induced the expression of the integrin ligands ICAM-1 and VCAM-1, as well as the T cell chemokines CXCL9, CXCL10, and CCL5. These effects were further associated with a functional increase in T cell but not neutrophil transmigration under laminar shear flow. Overall, these data show that IL-17 and TNF-α act in a synergistic manner to induce a distinct pattern of endothelial activation that sustains and enhances neutrophil influx to sites of inflammation.  相似文献   

4.
Intratracheal instillation of the monocyte chemoattractant JE/monocyte chemoattractant protein (MCP)-1 in mice was recently shown to cause increased alveolar monocyte accumulation in the absence of lung inflammation, whereas combined JE/MCP-1/lipopolysaccharide (LPS) challenge provoked acute lung inflammation with early alveolar neutrophil and delayed alveolar monocyte influx. We evaluated the role of resident alveolar macrophages (rAM) in these leukocyte recruitment events and related phenomena of lung inflammation. Depletion of rAM by pretreatment of mice with liposomal clodronate did not affect the JE/MCP-1-driven alveolar monocyte accumulation, despite the observation that rAM constitutively expressed the JE/MCP-1 receptor CCR2, as analyzed by flow cytometry and immunohistochemistry. In contrast, depletion of rAM largely suppressed alveolar cytokine release as well as neutrophil and monocyte recruitment profiles upon combined JE/MCP-1/LPS treatment. Despite this strongly attenuated alveolar inflammatory response, increased lung permeability was still observed in rAM-depleted mice undergoing JE/MCP-1/LPS challenge. Lung leakage was abrogated by codepletion of circulating neutrophils or administration of anti-CD18. Collectively, rAM are not involved in JE/MCP-1-driven alveolar monocyte recruitment in noninflamed lungs but largely contribute to the alveolar cytokine response and enhanced early neutrophil and delayed monocyte influx under inflammatory conditions (JE/MCP-1/LPS deposition). Loss of lung barrier function observed under these conditions is rAM independent but involves circulating neutrophils via beta(2)-integrin engagement.  相似文献   

5.
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.  相似文献   

6.
Lung injury is marked by a persistent self-propagating inflammation within the pulmonary tissue that is initiated by the migration of leukocytes into the alveolar space. Recent work has demonstrated that neuronal guidance proteins are involved into the orchestration of leukocyte migration. Neogenin is a crucial guidance receptor for axonal migration, yet its role during leukocyte migration and acute inflammation is to date unknown. Here, we report that neogenin influences neutrophil migration across endothelial HMEC-1 and alveolar A549 monolayers in vitro. In vivo, Neo1(-/-) mice demonstrated 59% reduced cell count, 41% reduced TNF-α, and 76% reduced IL-6 levels within the alveolar space during lung injury. In studies employing chimeric animals, the presence of Neo1(-/-) bone marrow was associated with a 42% reduction of cell count and reduced inflammatory changes within pulmonary tissue during lung injury. The functional inhibition of neogenin through antibody injection confirmed these results and the role of neogenin for the inflammatory changes within the alveolar space. Previously unappreciated, the guidance receptor neogenin has a significant effect on the orchestration of leukocyte migration and the control of acute inflammation.  相似文献   

7.
Recruitment of neutrophils to the lung is a sentinel event in acute lung inflammation. Identifying mechanisms that regulate neutrophil recruitment to the lung may result in strategies to limit lung damage and improve clinical outcomes. Recently, the renin angiotensin system (RAS) has been shown to regulate neutrophil influx in acute inflammatory models of cardiac, neurologic, and gastrointestinal disease. As a role for the RAS in LPS-induced acute lung inflammation has not been described, we undertook this study to examine the possibility that the RAS regulates neutrophil recruitment to the lung after LPS exposure. Pretreatment of mice with the angiotensin-converting enzyme (ACE) inhibitor enalapril, but not the anti-hypertensive hydralazine, decreased pulmonary neutrophil recruitment after exposure to LPS. We hypothesize that inhibition of LPS-induced neutrophil accumulation to the lung with enalapril occurred through both an increase in bradykinin, and a decrease in angiotensin II (ATII), mediated signaling. Bradykinin receptor blockade reversed the inhibitory effect of enalapril on neutrophil recruitment. Similarly, pretreatment with bradykinin receptor agonists inhibited IL-8-induced neutrophil chemotaxis and LPS-induced neutrophil recruitment to the lung. Inhibition of ATII-mediated signaling, with the ATII receptor 1a inhibitor losartan, decreased LPS-induced pulmonary neutrophil recruitment, and this was suggested to occur through decreased PAI-1 levels. LPS-induced PAI-1 levels were diminished in animals pretreated with losartan and in those deficient for the ATII receptor 1a. Taken together, these results suggest that ACE regulates LPS-induced pulmonary neutrophil recruitment via modulation of both bradykinin- and ATII-mediated pathways, each regulating neutrophil recruitment by separate, but distinct, mechanisms.  相似文献   

8.
CC chemokine ligand-2 (CCL2)/monocyte chemoattractant protein (MCP)-1 expression is upregulated during pulmonary inflammation, and the CCL2-CCR2 axis plays a critical role in leukocyte recruitment and promotion of host defense against infection. The role of CCL2 in mediating macrophage subpopulations in the pathobiology of noninfectious lung injury is unknown. The goal of this study was to examine the role of CCL2 in noninfectious acute lung injury. Our results show that lung-specific overexpression of CCL2 protected mice from bleomycin-induced lung injury, characterized by significantly reduced mortality, reduced neutrophil accumulation, and decreased accumulation of the inflammatory mediators IL-6, CXCL2 (macrophage inflammatory protein-2), and CXCL1 (keratinocyte-derived chemokine). There were dramatic increases in the recruitment of myosin heavy chain (MHC) II IA/IE(int)CD11c(int) cells, exudative macrophages, and dendritic cells in Ccl2 transgenic mouse lungs both at baseline and after bleomycin treatment compared with levels in wild-type mice. We further demonstrated that MHCII IA/IE(int)CD11c(int) cells engulfed apoptotic cells during acute lung injury. Our data suggested a previously undiscovered role for MHCII IA/IE(int)CD11c(int) cells in apoptotic cell clearance and inflammation resolution.  相似文献   

9.
Hypomorphic ADAM17(ex/ex) mice showed defects in mucosal regeneration due to inefficient enhanced GFR shedding. ADAM17 is the main sheddase of interleukin-6 receptor (IL-6R) to induce IL-6 trans-signaling. However, serum levels of soluble murine IL-6R were not reduced in ADAM17(ex/ex) mice, and murine ADAM17 was not the major sheddase of murine IL-6R. Shedding of murine IL-6R by murine ADAM17 was rescued in chimeric murine IL-6R proteins containing any extracellular domain but not the transmembrane and intracellular domain of human IL-6R. Apoptosis is a physiological stimulus of ADAM17-mediated shedding of human IL-6R. Even though apoptosis induced IL-6R shedding in mice, the responsible protease was identified as ADAM10. ADAM10 also was identified as protease responsible for ionomycin-induced shedding of murine and human IL-6R. However, in ADAM10-deficient murine embryonic fibroblasts, compensatory shedding of human IL-6R was mediated by ADAM17, but loss of ADAM10-mediated shedding of murine IL-6R was compensated by an as-yet-unidentified protease. Finally, we identified physiological purinergic P2X7 receptor stimulation as a novel inducer of murine and human IL-6R shedding solely mediated by ADAM10. In conclusion, we describe an unexpected species specificity of ADAM10 and ADAM17 and identified ADAM10 as novel inducible sheddase of IL-6R in mice and humans, which might have consequences for the interpretation of phenotypes from ADAM17- and ADAM10-deficient mice.  相似文献   

10.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

11.
Leukocyte migration into the epithelial compartment is an important feature in the active phase of mycobacterial infections. In this study, we used the Transwell model to investigate the mechanisms behind mycobacteria-induced leukocyte recruitment and investigated the role of TLR2 and TLR4 in this process. Infection of epithelial cells resulted in significantly increased secretion of the neutrophil chemotactic CXCL8 and IL-6, but no secretion of monocyte chemotactic CCL2 or TNF-α was observed. In contrast to epithelial response, mycobacteria-infected neutrophils and monocytes secreted all these cytokines. Corresponding with epithelial cytokine response, mycobacterial infection of the epithelial cells increased neutrophil diapedesis, but decreased monocyte recruitment. However, monocyte recruitment towards mycobacteria infected epithelial cells significantly increased following addition of neutrophil pre-conditioned medium. Mycobacterial infection also increases alveolar epithelial expression of TLR2, but not TLR4, as analyzed by flow cytometry, Western blotting and visualized by confocal microscopy. Blocking of TLR2 inhibited neutrophil recruitment and cytokine secretion, while blocking of TLR4 had a lesser effect. To summarize, we found that primary alveolar epithelial cells produced a selective TLR2-dependent cytokine secretion upon mycobacterial infection. Furthermore, we found that cooperation between cells of the innate immunity is required in mounting proper antimicrobial defence.  相似文献   

12.
Coordinated neutrophil and monocyte recruitment is a characteristic feature of acute lung inflammatory responses. We investigated the role of monocyte chemotactic protein-1 (CCL2, JE) and the chemokine receptor CCR2 in regulating alveolar leukocyte traffic. Groups of wild-type (WT) mice, CCR2-deficient mice, lethally irradiated CCR2-deficient and WT mice that were reciprocally bone marrow transplanted (chimeric CCR2 deficient and WT, respectively), chimeric CCR2-deficient mice with an enriched CCR2(+) alveolar macrophage population, and CCR2-deficient mice transfused with CCR2(+) mononuclear cells were treated with intratracheal CCL2 and/or Escherichia coli endotoxin. Our data show that alveolar monocyte recruitment is strictly dependent on CCR2. LPS-induced neutrophil migration to the lungs is CCR2 independent. However, when CCR2-bearing blood monocytes are present, alveolar neutrophil accumulation is accelerated and drastically amplified. We suggest that this hitherto unrecognized cooperativity between monocytes and neutrophils contributes to the strong, coordinated leukocyte efflux in lung inflammation.  相似文献   

13.
Serum IL-6 is increased in acute kidney injury (AKI) and inhibition of IL-6 reduces AKI-mediated lung inflammation. We hypothesized that circulating monocytes produce IL-6 and that alveolar macrophages mediate lung inflammation after AKI via chemokine (CXCL1) production. To investigate systemic and alveolar macrophages in lung injury after AKI, sham operation or 22 min of renal pedicle clamping (AKI) was performed in three experimental settings: 1) systemic macrophage depletion via diphtheria toxin (DT) injection to CD11b-DTR transgenic mice, 2) DT injection to wild-type mice, and 3) alveolar macrophage depletion via intratracheal (IT) liposome-encapsulated clodronate (LEC) administration to wild-type mice. In mice with AKI and systemic macrophage depletion (CD11b-DTR transgenic administered DT) vs. vehicle-treated AKI, blood monocytes and lung interstitial macrophages were reduced, renal function was similar, serum IL-6 was increased, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In wild-type mice with AKI administered DT vs. vehicle, serum IL-6 was increased. In mice with AKI and alveolar macrophage depletion (IT-LEC) vs. AKI with normal alveolar macrophage content, blood monocytes and lung interstitial macrophages were similar, alveolar macrophages were reduced, renal function was similar, lung inflammation was improved, lung CXCL1 was reduced, and lung capillary leak was increased. In conclusion, administration of DT in AKI is proinflammatory, limiting the use of the DTR-transgenic model to study systemic effects of AKI. Mice with AKI and either systemic mononuclear phagocyte depletion or alveolar macrophage depletion had reduced lung inflammation and lung CXCL1, but increased lung capillary leak; thus, mononuclear phagocytes mediate lung inflammation, but they protect against lung capillary leak after ischemic AKI. Since macrophage activation and chemokine production are key events in the development of acute lung injury (ALI), these data provide further evidence that AKI may cause ALI.  相似文献   

14.
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection.  相似文献   

15.
Disruption of the lung endothelial and epithelial barriers during acute inflammation leads to excessive neutrophil migration. It is likely that activated platelets promote pulmonary recruitment of neutrophils during inflammation, and previous studies have found that anti-platelet therapy and depletion of circulating platelets have lung-protective effects in different models of inflammation. Because ADP signaling is important for platelet activation, I investigated the role of the ADP-receptor P2Y1, a G protein-coupled receptor expressed on the surface of circulating platelets, during lipopolysaccharide (LPS)-induced inflammation and lung injury in P2Y1-null and wild-type mice. Systemic inflammation was induced by a single intraperitoneal dose of LPS (3 mg/kg), and the mice were analyzed 24 h posttreatment. The data show that the LPS-induced inflammation levels were comparable in the P2Y1-null and wild-type mice. Specifically, splenomegaly, counts of circulating platelets and white blood cells (lymphocytes and neutrophils), and assessments of lung injury (tissue architecture and cell infiltration) were similar in the P2Y1-null and wild-type mice. Based on my results, I conclude that lung injury during LPS-induced inflammation in mice is independent of P2Y1 signaling. I propose that if a blockade of purinergic signaling in platelets is a potential lung-protective strategy in the treatment of acute inflammation, then it is more likely to be a result of the disruption of the signaling pathway mediated by P2Y12, another G protein-coupled receptor that mediates platelet responses to ADP.  相似文献   

16.
Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.  相似文献   

17.
IL-17 is a cytokine implicated in the regulation of inflammation. We investigated the role of this cytokine in neutrophil recruitment using a model of LPS-induced lung inflammation in mice. In the bronchoalveolar lavage, LPS induced a first influx of neutrophils peaking at day 1, followed by a second wave, peaking at day 2. IL-17 levels were increased during the late phase neutrophilia (day 2), and this was concomitant with an increased number of T cells and macrophages, together with an increase of KC and macrophage-inflammatory protein-2 levels in the lung tissue. Intranasal treatment with a neutralizing murine anti-IL-17 Ab inhibited the late phase neutrophilia. In the bronchoalveolar lavage cells, IL-17 mRNA was detected at days 1, 2, and 3 postchallenge, with a strong expression at day 2. This expression was associated with CD4(+) and CD8(+) cells, but also with neutrophils. When challenged with LPS, despite the absence of T cells, SCID mice also developed a neutrophilic response associated with IL-17 production. In BALB/c mice, IL-15 mRNA, associated mainly with neutrophils, was evidenced 1 day after LPS challenge. In vitro, IL-15 was able to induce IL-17 release from purified spleen CD4(+) cells, but not spleen CD8(+) or airway neutrophils. We have shown that IL-17, produced mainly by CD4(+) cells, but also by neutrophils, plays a role in the mobilization of lung neutrophils following bacterial challenge. In addition, our results suggest that IL-15 could represent a physiological trigger that leads to IL-17 production following bacterial infection.  相似文献   

18.
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung.  相似文献   

19.
The successful resolution of inflammation is dependent upon the coordinated transition from the initial recruitment of neutrophils to a more sustained population of mononuclear cells. IL-6, which signals via the common receptor subunit gp130, represents a crucial checkpoint regulator of neutrophil trafficking during the inflammatory response by orchestrating chemokine production and leukocyte apoptosis. However, the relative contribution of specific IL-6-dependent signaling pathways to these processes remains unresolved. To define the receptor-mediated signaling events responsible for IL-6-driven neutrophil trafficking, we used a series of gp130 knockin mutant mice displaying altered IL-6-signaling capacities in an experimental model of acute peritoneal inflammation. Hyperactivation of STAT1 and STAT3 in gp130(Y757F/Y757F) mice led to a more rapid clearance of neutrophils, and this coincided with a pronounced down-modulation in production of the neutrophil-attracting chemokine CXCL1/KC. By contrast, the proportion of apoptotic neutrophils in the inflammatory infiltrate remained unaffected. In gp130(Y757F/Y757F) mice lacking IL-6, neutrophil trafficking and CXCL1/KC levels were normal, and this corresponded with a reduction in the level of STAT1/3 activity. Furthermore, monoallelic ablation of Stat3 in gp130(Y757F/Y757F) mice specifically reduced STAT3 activity and corrected both the rapid clearance of neutrophils and impaired CXCL1/KC production. Conversely, genetic deletion of Stat1 in gp130(Y757F/Y757F) mice failed to rescue the altered responses observed in gp130(Y757F/Y757F) mice. Collectively, these data genetically define that IL-6-driven signaling via STAT3, but not STAT1, limits the inflammatory recruitment of neutrophils, and therefore represents a critical event for the termination of the innate immune response.  相似文献   

20.
Lipopolysaccharide (LPS) is the major structural component of Gram-negative bacteria cell wall and a highly pro-inflammatory toxin. Naringenin is found in Citrus fruits and exhibits antioxidant and anti-inflammatory properties through inhibition of NF-κB activation but its effects in LPS-induced inflammatory pain and leukocyte recruitment were not investigated yet. We investigated the effects of naringenin in mechanical hyperalgesia, thermal hyperalgesia and leukocyte recruitment induced by intraplantar injection of LPS in mice. We found that naringenin reduced hyperalgesia to mechanical and thermal stimuli, myeloperoxidase (MPO, a neutrophil and macrophage marker) and N-acetyl-β-D-glucosaminidase (NAG, a macrophage marker) activities, oxidative stress and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production in the paw skin. In the peritoneal cavity, naringenin reduced neutrophil and mononuclear cell recruitment, and abrogated MPO and NAG activity, cytokine and superoxide anion production, and lipid peroxidation. In vitro, pre-treatment with naringenin inhibited superoxide anion and cytokine (TNF-α, IL-1β, IL-6, and IL-12) production by LPS-stimulated RAW 264.7 macrophages. Finally, we demonstrated that naringenin inhibited NF-κB activation in vitro and in vivo. Therefore, naringenin is a promising compound to treat LPS-induced inflammatory pain and leukocyte recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号