首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of 6-dimethylamino 1H-pyrazolo[3,4-d]pyrimidines substituted at positions 1 and 4, and their effects on murine macrophage and human neutrophil functions are described. Several compounds and especially 4b-6b are potent inhibitors of PGE(2) generation in murine macrophages. This action is related to a direct effect on COX-2 activity without affecting the enzyme expression. Some of these compounds also inhibited COX-1 and COX-2 in human monocytes and 4b showed selectivity for COX-2 inhibition.  相似文献   

2.
3.
4.
5.
Magnesium mediated carbometalation (Grignard addition) to appropriate propargyl alcohols to synthesize a cross-section of variably substituted alpha,beta-unsaturated gamma-sultines is described. Thio-rofecoxib, a selective COX-2 inhibitor (12), is synthesized by this method and its IC(50), microM COX-1 and COX-2 inhibition, and whole blood stability values reported.  相似文献   

6.
Interleukin-1beta (IL-1beta) has been shown in numerous studies to increase prostaglandin (PG) output by up-regulating the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in PG synthesis. In this study, we investigated the possible role of the nuclear factor kappa B (NFkappaB) in IL-1beta signaling, leading to the expression of COX-2 in human amnion cell culture. Fetal amnion was obtained following vaginal delivery and digested with collagenase, and the subepithelial (mesenchymal) cells were isolated. Cultures were characterized with antisera to keratin (epithelial cells) and vimentin (mesenchymal cells). Confluent cells were stimulated with human recombinant IL-1beta, and activation of NFkappaB was assessed by measuring changes in the inhibitory protein IkappaB (total IkappaB and phosphorylated IkappaB) using Western blot analysis as well as by nuclear binding of NFkappaB using an electrophoretic mobility shift assay. COX-2 protein levels were determined by Western blot analysis. After 5 min of stimulation with IL-1beta, phosphorylated IkappaB began to appear, 90% of which was degraded within 15 min. This was temporally associated with decreased total IkappaB and increased nuclear NFkappaB DNA-binding activity. In the IL-1beta-treated group, COX-2 protein began to increase after 6 h; this response was time-dependent, with a significant increase until 24 h after IL-1beta stimulation. When NFkappaB translocation was blocked by using SN50 (a cell-permeable inhibitory peptide of NFkappaB translocation), the synthesis of COX-2 protein was inhibited. These results suggest that NFkappaB is involved in the IL-1beta-induced COX-2 expression in the mesenchymal cells of human amnion.  相似文献   

7.
We tested a series of 11 new aminothiopyrimidones on the activity of inducible nitric oxide synthase (iNOS) and prostaglandin G/H synthase-1 and 2 (COX-1 and COX-2) in the whole human blood and monocyte-macrophage J774 cell line. To induce COX-2 and iNOS, blood samples and J774 cells were stimulated with bacterial lipopolysaccharide (LPS) in the absence or presence of the test compounds. After incubation, the plasma and the supernatants of culture media were collected for the measurement of TxB2 and PGE2 by a specific enzyme-immunoassay and determination of nitrite by a colorimetric assay. Several phenylthieno derivatives of substituted pyrimidone inhibited formation of both COX-2 and iNOS derived products with one of the compounds (compound 11, N-[2-[(2,4-dinitrophenyl)thio]-4-oxo-6-phenylthieno[2,3-d]pyrimidin-3(4H)-y]methanesulfonamide) showing a complete inhibition of LPS-stimulated formation of NO and PGE2.  相似文献   

8.
A series of novel sulfone substituted 4,5-diarylthiazoles have been synthesized and evaluated for their inhibition of the two isoforms of human cyclooxygenase (COX-1 and COX-2). This series displays exceptionally selective COX-2 inhibition.  相似文献   

9.
3H-1,2-Dithiole-3-thiones substituted with a 3,5-di-tert-butyl-4-hydroxyphenyl (DTBHP) or a 3,5-di-tert-butyl-4-methoxyphenyl group at the C5 position were prepared and their ability to inhibit the cyclooxygenase isoenzymes, COX-1 and COX-2 was evaluated. Both compounds were potent inhibitors of COX-2 (relative to rofecoxib), and while the phenol was a weak inhibitor of COX-1, the methyl ether gave no measurable inhibition. Docking studies of the two compounds into the COX-1 and -2 active sites showed that the methyl ether could only fit in the COX-2 active site whereas the phenol could be docked into both COX-1 and -2. This study reports a new mode for inhibitor binding to COX-1 and -2 and a novel structural scaffold for the development of COX-2 selective inhibitors.  相似文献   

10.
Objective: There are controversial reports in conscious animals regarding the role of cyclooxygenase-2 in late preconditioning (LP). This study analyzed the effect of COX-2 involvement in non-preconditioned hearts (NP) and in mediation of LP protection against stunning in conscious sheep submitted to a prolonged reversible ischemia. Methods: Six groups were considered: NP: 12 min ischemia and 120 min reperfusion; LP consisting of six periods of 5 min-ischemia-5 min reperfusion 24 h before the 12 min ischemia; NP and LP with either the non-selective COX-1 and COX-2 inhibitor, aspirin (20 mg/kg), or the specific COX-2 inhibitor, celecoxib (3 mg/kg) before the 12 min ischemic period. Results: Mean postischemic wall thickening fraction (as % of preischemic values) improved from 49.6 ± 4.0% in NP to 72.5 ± 3.5% in LP (p < 0.01) and a similar protection was obtained with aspirin and celecoxib in NP hearts (p < 0.01). Neither aspirin nor celecoxib administration prior to the prolonged ischemia on day 2 abrogated LP improvement of postischemic dysfunction. Moreover, LP with aspirin improved the protective response (80.7 ± 2.6%) over that obtained with aspirin in NP hearts (66.6 ± 4.7%, p < 0.05). This effect was not obtained with celecoxib. Conclusions: Aspirin and celecoxib showed that COX-2 has a detrimental effect on mechanical cardioprotection in NP hearts of conscious sheep submitted to a prolonged reversible ischemia, and does not seem to participate as mediator of LP. Aspirin revealed a similar COX-1 deleterious action, since only when both COX-1 and COX-2 were inhibited, LP was put in evidence adding functional improvement over that obtained in NP hearts treated with aspirin.  相似文献   

11.
The radiosynthesis of 3-(4-[(18)F]fluorophenyl)-2-(4-methylsulfonylphenyl)-1H-indole [(18)F]-3 as potential PET radiotracer for functional characterization of cyclooxygenase-2 (COX-2) in vitro and in vivo is described. [(18)F]-3 was prepared by McMurry cyclization of a (18)F-labeled intermediate with low valent titanium and zinc via a two-step procedure in a remote controlled synthesizer unit including HPLC purification and solid phase extraction. In this way [(18)F]-3 was synthesized in 80 min synthesis time in 10% total decay corrected yield from [(18)F]fluoride in radiochemical purity >98% and a specific activity of 74-91 GBq/μmol (EOS). [(18)F]-3 was evaluated in vitro using pro-inflammatory stimulated THP-1 and COX-2 expressing tumor cell lines (FaDu, A2058, HT-29), where the radiotracer uptake was shown to be consistent with up regulated COX-2 expression. The stability of [(18)F]-3 was determined by incubation in rat whole blood and plasma in vitro and by metabolite analysis of arterial blood samples in vivo, showing with 75% of original compound after 60 min an acceptable high metabolic stability. However, no substantial tumor accumulation of [(18)F]-3 could be observed by dynamic small animal PET studies on HT-29 tumor-bearing mice in vivo. This may be due to the only moderate COX-1/COX-2 selectivity of 3 as demonstrated by both cellular and enzymatic cyclooxygenase inhibition assay in vitro. Nevertheless, the new approach first using McMurry cyclization in (18)F-chemistry gives access to (18)F-labeled diarylsubstituted heterocycles that hold promise as radiolabeled COX-2 inhibitors.  相似文献   

12.
13.
A series of 1,4- and 1,5-diaryl substituted 1,2,3-triazoles was synthesized by either Cu(I)-catalyzed or Ru(II)-catalyzed 1,3-dipolar cycloaddition reactions between 1-azido-4-methane-sulfonylbenzene 9 and a panel of various para-substituted phenyl acetylenes (4-H, 4-Me, 4-OMe, 4-NMe2, 4-Cl, 4-F). All compounds were used in in vitro cyclooxygenase (COX) assays to determine the combined electronic and steric effects upon COX-1 and COX-2 inhibitory potency and selectivity. Structure-activity relationship studies showed that compounds having a vicinal diaryl substitution pattern showed more potent COX-2 inhibition (IC50 = 0.03–0.36 μM) compared to their corresponding 1,3-diaryl-substituted counterparts (IC50 = 0.15 to >10.0 μM). In both series, compounds possessing an electron-withdrawing group (Cl and F) at the para-position of one of the aryl rings displayed higher COX-2 inhibition potency and selectivity as determined for compounds containing electron-donating groups (Me, OMe, NMe2). The obtained data show, that the central carbocyclic or heterocyclic ring system as found in many COX-2 inhibitors can be replaced by a central 1,2,3-triazole unit without losing COX-2 inhibition potency and selectivity. The high COX-2 inhibition potency of some 1,2,3-triazoles having a vicinal diaryl substitution pattern along with their ease in synthesis through versatile Ru(II)-catalyzed click chemistry make this class of compounds interesting candidates for further design and synthesis of highly selective and potent COX-2 inhibitors.  相似文献   

14.
We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-kappaB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and interferon (IFN)-gamma. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 microM) or the proteosome inhibitor MG-132 (1 microM). SB-203580 did not affect cytokine-stimulated IkappaBalpha degradation, NF-kappaB nuclear binding activity, or NF-kappaB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-kappaB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-kappaB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-kappaB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.  相似文献   

15.
16.
17.
Cyclooxygenase (COX)-1 and hematopoietic prostaglandin (PG) D synthase (H-PGDS) proteins, which are both involved in the arachidonate cascade, were stable in human megakaryocytic MEG-01 cells. In contrast, once the intracellular calcium level was increased by treatment with a calcium ionophore, both protein levels rapidly decreased with a half-life of less than 30 and 120 min for COX-1 and H-PGDS, respectively. In the presence of a proteasome inhibitor, COX-1 and H-PGDS proteins accumulated within 10 and 30 min, respectively, and concurrently appeared as the high-molecular-mass ubiquitinated proteins within 30 and 60 min, respectively, after an increase in the intracellular calcium level. The ubiquitination of these proteins was also observed when ADP, instead of a calcium ionophore, was used as an inducer to elevate the intracellular calcium level. When the entry of calcium ion into the cells was inhibited by ethylene glycol tetraacetic acid (EGTA), the ubiquitination of COX-1 and H-PGDS was clearly suppressed; and the addition of CaCl(2) to the medium cleared the EGTA-mediated suppression of the ubiquitination. These results indicate that COX-1 and H-PGDS were rapidly ubiquitinated and degraded through the ubiquitin-proteasome system in response to the elevation of the intracellular calcium level.  相似文献   

18.
Cyclooxygenase-2 (COX-2) has been linked to neoplastic progression in Barrett's esophagus. Acid exposure has been shown both to activate the MAPK pathways and to increase COX-2 protein expression in Barrett's metaplasia, but it is not known whether these effects are interrelated. We hypothesized that acid-induced activation of the MAPK pathways mediates an increase in COX-2 expression in Barrett's esophagus, and we tested this hypothesis in a Barrett's-associated adenocarcinoma cell line (SEG-1). We exposed SEG-1 cells to acidic or neutral media in the presence and absence of two MAPK inhibitors: U-0126 (an ERK inhibitor) or SB-203580 (a p38 inhibitor). We quantitated COX-2 protein levels using an enzyme immunometric assay and COX-2 mRNA levels using real-time PCR. We also determined how acid affects the activity of the COX-2 promoter and mRNA stability. Compared with SEG-1 cells exposed to neutral media, acid-exposed cells exhibited a 2.8-fold increase in COX-2 mRNA levels within 30 min. Both U-0126 and SB-203580 attenuated the acid-induced increase in COX-2 mRNA. Acid significantly increased COX-2 protein expression and promoter activity, and both of these effects were abolished by treatment with U-0126 and SB-203580. Acid exposure also stabilized COX-2 mRNA levels, an effect that was abolished by U-0126 but not by SB-203580. We conclude that acid increases COX-2 expression through activation of the MAPK pathways. Acid-induced activation of both ERK and p38 causes a significant increase in COX-2 promoter activity, and acid-activated ERK stabilizes COX-2 mRNA. These findings suggest potential mechanisms whereby acid reflux might promote carcinogenesis in Barrett's esophagus.  相似文献   

19.
20.
Y Guo  DN Tukaye  WJ Wu  X Zhu  M Book  W Tan  SP Jones  G Rokosh  S Narumiya  Q Li  R Bolli 《PloS one》2012,7(7):e41178

Background

Pharmacologic studies with cyclooxygenase-2 (COX-2) inhibitors suggest that the late phase of ischemic preconditioning (PC) is mediated by COX-2. However, nonspecific effects of COX-2 inhibitors cannot be ruled out, and the selectivity of these inhibitors for COX-2 vs. COX-1 is only relative. Furthermore, the specific prostaglandin (PG) receptors responsible for the salubrious actions of COX-2-derived prostanoids remain unclear.

Objective

To determine the role of COX-2 and prostacyclin receptor (IP) in late PC by gene deletion.

Methods

COX-2 knockout (KO) mice (COX-2−/−), prostacyclin receptor KO (IP−/−) mice, and respective wildtype (WT, COX-2+/+ and IP+/+) mice underwent sham surgery or PC with six 4-min coronary occlusion (O)/4-min R cycles 24 h before a 30-min O/24 h R.

Results

There were no significant differences in infarct size (IS) between non-preconditioned (non-PC) COX-2+/+, COX-2−/−, IP+/+, and IP−/− mice, indicating that neither COX-2 nor IP modulates IS in the absence of PC. When COX-2−/− or IP−/− mice were preconditioned, IS was not reduced, indicating that the protection of late PC was completely abrogated by deletion of either the COX-2 or the IP gene. Administration of the IP selective antagonist, RO3244794 to C57BL6/J (B6) mice 30 min prior to the 30-min O had no effect on IS. When B6 mice were preconditioned 24 h prior to the 30-min O, IS was markedly reduced; however, the protection of late PC was completely abrogated by pretreatment of RO3244794.

Conclusions

This is the first study to demonstrate that targeted disruption of the COX-2 gene completely abrogates the infarct-sparing effect of late PC, and that the IP, downstream of the COX-2/prostanoid pathway, is a key mediator of the late PC. These results provide unequivocal molecular genetic evidence for an essential role of the COX-2/PGI2 receptor axis in the cardioprotection afforded by the late PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号