首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Neutrophils infiltrate the site of infection and play critical roles in host defense, especially against extracellular bacteria. In the present study, we found a rapid and transient production of IL-17 after i.p. infection with Escherichia coli, preceding the influx of neutrophils. Neutralization of IL-17 resulted in a reduced infiltration of neutrophils and an impaired bacterial clearance. Ex vivo intracellular cytokine flow cytometric analysis revealed that gammadelta T cell population was the major source of IL-17. Mice depleted of gammadelta T cells by mAb treatment or mice genetically lacking Vdelta1 showed diminished IL-17 production and reduced neutrophil infiltration after E. coli infection, indicating an importance of Vdelta1(+) gammadelta T cells as the source of IL-17. It was further revealed that gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23, which was induced rapidly after E. coli infection in a TLR4 signaling-dependent manner. Thus, although gammadelta T cells are generally regarded as a part of early induced immune responses, which bridge innate and adaptive immune responses, our study demonstrated a novel role of gammadelta T cells as a first line of host defense controlling neutrophil-mediated innate immune responses.  相似文献   

4.
5.
IL-17 is a cytokine produced by T cells in response to IL-23. Recent data support a new subset of CD4 Th cells distinct from Th1 or Th2 cells that produce IL-17 and may contribute to inflammation. In this study, we demonstrate that, in naive mice, as well as during Mycobacterium tuberculosis infection, IL-17 production is primarily from gammadelta T cells and other non-CD4(+)CD8(+) cells, rather than CD4 T cells. The production of IL-17 by these cells is stimulated by IL-23 alone, and strongly induced by the cytokines, including IL-23, produced by M. tuberculosis-infected dendritic cells. IL-23 is present in the lungs early in infection and the IL-17-producing cells, such as gammadelta T cells, may represent a central innate protective response to pulmonary infection.  相似文献   

6.
Ke Y  Kapp LM  Kapp JA 《Cellular immunology》2003,221(2):107-114
Although many tumors express tumor-specific antigens, most fail to stimulate effective immune responses. Tumors generally lack co-stimulatory molecules, which can lead to tolerance of tumor-specific T cells and progressive tumor growth. Here, we demonstrate that the ovalbumin (OVA) transfected EL4 tumor, E.G7-OVA, grows progressively in syngeneic mice even though the tumor can be rejected if the mice are immunized with OVA in adjuvant. E.G7-OVA grew more rapidly in RAG-1 deficient than sufficient mice suggesting that normal mice make an abortive immune response to this tumor. Depletion of gammadelta T cells or IL-10 augmented the ability of B6 mice to reject E.G7-OVA. Spleen cells from normal, but not IL-10 knockout, mice reconstituted rapid tumor growth in gammadelta T cell-deficient mice. Thus, gammadelta T cells play an important role in preventing immune elimination of this tumor by a mechanism that directly or indirectly involves IL-10.  相似文献   

7.
NK and T cell-derived IFN-gamma is a key cytokine that stimulates innate immune responses and directs adaptive T cell response toward Th1 type. IL-15, IL-18, and IL-21 have significant roles as activators of NK and T cell functions. We have previously shown that IL-15 and IL-21 induce the expression of IFN-gamma, T-bet, IL-12R beta 2, and IL-18R genes both in NK and T cells. Now we have studied the effect of IL-15, IL-18, and IL-21 on IFN-gamma gene expression in more detail in human NK and T cells. IL-15 clearly activated IFN-gamma mRNA expression and protein production in both cell types. IL-18 and IL-21 enhanced IL-15-induced IFN-gamma gene expression. IL-18 or IL-21 alone induced a modest expression of the IFN-gamma gene but a combination of IL-21 and IL-18 efficiently up-regulated IFN-gamma production. We also show that IL-15 activated the binding of STAT1, STAT3, STAT4, and STAT5 to the regulatory sites of the IFN-gamma gene. Similarly, IL-21 induced the binding of STAT1, STAT3, and STAT4 to these elements. IL-15- and IL-21-induced STAT1 and STAT4 activation was verified by immunoprecipitation with anti-phosphotyrosine Abs followed by Western blotting with anti-STAT1 and anti-STAT4 Abs. IL-18 was not able to induce the binding of STATs to IFN-gamma gene regulatory sites. IL-18, however, activated the binding of NF-kappa B to the IFN-gamma promoter NF-kappa B site. Our results suggest that both IL-15 and IL-21 have an important role in activating the NK cell-associated innate immune response.  相似文献   

8.
To better understand the roles of gammadelta T cells in mucosal infection, we utilized Salmonella enterica serovar Typhimurium (Salmonella serovar Typhimurium) infection in cattle as it closely approximates Salmonella serovar Typhimurium-induced enterocolitis in humans. Protein and gene expression in alphabeta and gammadelta T cells derived from lymphatic ducts draining the gut mucosa in Salmonella serovar Typhimurium-infected calves were analyzed. In calves with enterocolitis, general gene expression trends in gammadelta T cells suggested subtle activation and innate response, whereas alphabeta T cells were relatively quiescent following Salmonella serovar Typhimurium infection. An increase in IL-2R alpha expression on gammadelta T cells from infected calves and results from in vitro assays suggested that gammadelta T cells were primed by Salmonella serovar Typhimurium LPS to better respond to IL-2 and IL-15. Together with gene expression trends in vivo, these data support early priming activation of target tissue gammadelta T cells during Salmonella serovar Typhimurium infection.  相似文献   

9.
An influx of neutrophils followed a short time later by an influx of macrophages to the infected site plays a key role in innate immunity against Escherichia coli infection. We found in this study that Vdelta1-/- mice exhibited impaired accumulation of peritoneal macrophages but not neutrophils and delayed bacterial clearance after i.p. inoculation with E. coli. Peritoneal gammadelta T cells from E. coli-infected wild-type mice produced CCL3/MIP-1alpha and CCL5/RANTES in response to gammadelta TCR triggering in vitro, whereas such production was not evident in gammadelta T cells from E. coli-infected Vdelta1-/- mice. Neutralization of CCL3/MIP-1alpha by a specific mAb in vivo significantly inhibited the accumulation of macrophages in the peritoneal cavity after E. coli infection, resulting in exacerbated bacterial growth in the peritoneal cavity. These results suggest that Vdelta1+ gammadelta T cells bridge a gap between neutrophils and macrophages in innate immunity during E. coli infection mediated by production of CC chemokines, enhancing macrophage trafficking to the site of infection.  相似文献   

10.
TL1A, a recently described TNF-like cytokine that interacts with DR3, costimulates T cells and augments anti-CD3 plus anti-CD28 IFN-gamma production. In the current study we show that TL1A or an agonistic anti-DR3 mAb synergize with IL-12/IL-18 to augment IFN-gamma production in human peripheral blood T cells and NK cells. TL1A also enhanced IFN-gamma production by IL-12/IL-18 stimulated CD56(+) T cells. When expressed as fold change, the synergistic effect of TL1A on cytokine-induced IFN-gamma production was more pronounced on CD4(+) and CD8(+) T cells than on CD56(+) T cells or NK cells. Intracellular cytokine staining showed that TL1A significantly enhanced both the percentage and the mean fluorescence intensity of IFN-gamma-producing T cells in response to IL-12/IL-18. The combination of IL-12 and IL-18 markedly up-regulated DR3 expression in NK cells, whereas it had minimal effect in T cells. Our data suggest that TL1A/DR3 pathway plays an important role in the augmentation of cytokine-induced IFN-gamma production in T cells and that DR3 expression is differentially regulated by IL-12/IL-18 in T cells and NK cells.  相似文献   

11.
Helminth infection protects mice from anaphylaxis via IL-10-producing B cells   总被引:13,自引:0,他引:13  
Modulation of the immune system by infection with helminth parasites, including schistosomes, is proposed to reduce the levels of allergic responses in infected individuals. In this study we investigated whether experimental infection with Schistosoma mansoni could alter the susceptibility of mice to an extreme allergic response, anaphylaxis. We formally demonstrate that S. mansoni infection protects mice from an experimental model of systemic fatal anaphylaxis. The worm stage of infection is shown to mediate this protective effect. In vivo depletion studies demonstrated an imperative role for B cells and IL-10 in worm-mediated protection. Furthermore, worm infection of mice increases the frequency of IL-10-producing B cells compared with that in uninfected mice. However, transfer of B cells from worm-infected mice or in vitro worm-modulated B cells to sensitized recipients exacerbated anaphylaxis, which was attributed to the presence of elevated levels of IL-4-producing B cells. Worm-modulated, IL-10-producing B cells from IL-4-deficient, but not IL-5-, IL-9- or IL-13-deficient, mice conferred complete resistance to anaphylaxis when transferred to naive mice. Therefore, we have dissected a novel immunomodulatory mechanism induced by S. mansoni worms that is dependent on an IL-10-producing B cell population that can protect against allergic hypersensitivity. These data support a role for helminth immune modulation in the hygiene hypothesis and further illustrate the delicate balance between parasite induction of protective regulatory (IL-10) responses and detrimental (IL-4) allergic responses.  相似文献   

12.
IL-18 promotes NK cell and Th1 cell activity and may bridge innate and adaptive immune responses. Myelin oligodendrocyte glycoprotein (MOG) is a myelin component of the CNS and is a candidate autoantigen in multiple sclerosis. In the present study we show that IL-18-deficient (IL-18-/-) mice are defective in mounting autoreactive Th1 and autoantibody responses and are resistant to MOG35-55 peptide-induced autoimmune encephalomyelitis. IL-18 administration enhances the disease severity in wild-type mice and restores the ability to generate Th1 response in the IL-18-/- mice. This restoration was abrogated in NK cell-depleted mice, indicating that the action of IL-18 in promoting the generation of MOG-specific Th cells was dependent on NK cells. Furthermore, transfer of NK cells from recombinase-activating gene 1-/- mice, but not from recombinase-activating gene 1/IFN-gamma-/- mice, rescued the defective Th1 responses in IL-18-/- mice and rendered IL-18-/- mice susceptible to the induction of autoimmune encephalomyelitis. Thus, IL-18 can direct autoreactive T cells and promote autodestruction in the CNS at least in part via induction of IFN-gamma by NK cells.  相似文献   

13.
Protective immunity in paracoccidioidomycosis is mainly mediated by cellular immunity. The role of B cells in this disease, in particular B-1 cells, is poorly understood. The aim of this study was to characterize the participation of B-1 cells in resistance or susceptibility of BALB/c and BALB/Xid mice to P. brasiliensis (Pb) pulmonary infection. BALB/Xid, which lacks B-1 cells, exhibited higher resistance to infection when compared with BALB/c mice. However, adoptive transfer of B-1 cells to BALB/Xid mice drastically increased the susceptibility of these animals to Pb infection. The fungal burden in BALB/c and B-1-reconstituted BALB/Xid was significantly higher as compared to BALB/Xid strain. Compact, well-organized granulomas were observed in the lungs of BALB/Xid mice, whereas large lesions with necrotic center with a plethora of fungi developed in BALB/c mice. It was also shown that B-1 cells impair phagocytosis of Pb by macrophages in vitro via secretion of IL-10, which was increased upon stimulation with a purified Pb antigen, gp43. Finally, in vivo blockade of IL-10 led to a better control of infection by the highly susceptible B10.A mouse. These findings suggest that B-1 cells play a major role in resistance/susceptibility to Pb infection in murine models, most likely via production of IL-10.  相似文献   

14.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

15.
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions.  相似文献   

16.
Respiratory viral infections increase inflammatory responses to concurrent or secondary bacterial challenges, thereby worsening disease outcome. This potentiation of inflammation is explained at least in part by IFN-gamma promoting increased sensitivity to TNF-alpha and LPS. We sought to determine whether and, if so, how IFN-gamma can modulate proinflammatory responses to TNF-alpha and LPS by epithelial cells, which are key effector cells in the airways. Preincubation of airway epithelial-like NCI-H292 cells with IFN-gamma resulted in a hyperresponsive IL-6 and IL-8 production to TNF-alpha and LPS. The underlying mechanism involved the induction of indoleamine 2,3-dioxygenase, which catabolized the essential amino acid, tryptophan. Depletion of tryptophan led to stabilization of IL-6 and IL-8 mRNA and increased IL-6 and IL-8 responses, whereas supplementing tryptophan largely restored these changes. This novel mechanism may be implicated in enhanced inflammatory responses to bacterial challenges following viral infection.  相似文献   

17.
《Cytokine》2014,70(2):226-233
Elevated levels of the cytokine IL-13 has been found to be associated with autoimmune diseases, including Sjögren’s Syndrome. However, whether IL-13 plays a causative role in disease development is not known and cannot be easily studied in humans. Our previous work has shown that levels of IL-13 are elevated in Id3 knockout mice, which has been established as a model for primary Sjögren’s Syndrome. Here, we utilized an IL-13 reporter to determine the source of the elevated IL-13 levels observed in Id3 knockout mice and assess its contribution to SS pathology. Our results indicate that T cells, notably CD4 and γδ T cells, in Id3 knockout mice acquire IL-13 competency at an elevated rate well before disease symptoms become apparent. We also show that T cells developing early in life are more predisposed to produce IL-13. Finally, analysis of Id3 and IL-13 double deficient mice demonstrated that IL-13 plays an essential role in the deterioration of gland function. Our study provides crucial genetic evidence that enhanced IL-13 production by T cells can play a causative role in the exocrinopathy observed in Id3 knockout mice.  相似文献   

18.
The importance of IFN-gamma in regulating the host CD8+ T cell response during microbial infection has not been delineated. Mice deficient for the p40 chain of the IL-12 heterodimer have impaired IFN-gamma production and are susceptible to infection with the intracellular parasite Toxoplasma gondii. The administration of exogenous IFN-gamma to parasite-infected p40-/- mice increases survival and up-regulates the depressed CD8+ T cell response following infection. CD8+ T cells isolated from cytokine-treated p40-/- mice exhibit an increase in both precursor CTL frequency and IFN-gamma production compared with untreated controls. The enhancement of the CD8+ T cell response is independent of CD4+ T cell help. These CD8+ T cells induce protective immunity against a lethal challenge when adoptively transferred into naive p40-/- and IFN-gamma-/- mice. These observations indicate that IFN-gamma can regulate the CD8+ T cell response during T. gondii infection.  相似文献   

19.
20.
The TNF superfamily of cytokines play an important role in T cell activation and inflammation. Sustained expression of lymphotoxin-like inducible protein that competes with glycoprotein D for binding herpesvirus entry mediator on T cells (LIGHT) (TNFSF14) causes a pathological intestinal inflammation when constitutively expressed by mouse T cells. In this study, we characterized LIGHT expression on activated human T cell subsets in vitro and demonstrated a direct proinflammatory effect on regulation of IFN-gamma. LIGHT was induced in memory CD45RO CD4+ T cells and by IFN-gamma-producing CD4+ T cells. Kinetic analysis indicated rapid induction of LIGHT by human lamina propria T cells, reaching maximal levels by 2-6 h, whereas peripheral blood or lymph node-derived T cells required 24 h. Further analysis of intestinal specimens from a 41 patient cohort by flow cytometry indicated membrane LIGHT induction to higher peak levels in lamina propria T cells from the small bowel or rectum but not colon, when compared with lymph node or peripheral blood. Independent stimulation of the LIGHT receptor, herpesvirus entry mediator, induced IFN-gamma production in lamina propria T cells, while blocking LIGHT inhibited CD2-dependent induction of IFN-gamma synthesis, indicating a role for LIGHT in the regulation of IFN-gamma and as a putative mediator of proinflammatory T-T interactions in the intestinal mucosa. Taken together, these findings suggest LIGHT-herpesvirus entry mediator mediated signaling as an important immune regulatory mechanism in mucosal inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号