首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
The effect of biofilm model, strain and mode of growth (biofilm or planktonic) on protein expression in Streptococcus mutans, a dental pathogen, was determined by two-dimensional difference gel electrophoresis. The bacterial strain (21-28% differentially expressed proteins) and the biofilm model (0.3-7.8% differential expression) used have a much larger effect on protein expression than the mode of growth (0.2-0.7% differential expression), something that has been ignored in biofilm studies up to now.  相似文献   

4.
Shewanella oneidensis MR-1 is a Gram-negative, facultative aerobic bacterium, able to respire a variety of electron acceptors. Due to its capability to reduce solid ferric iron, S. oneidensis plays an important role in microbially induced corrosion of metal surfaces. Since this requires cellular adhesion to the metal surface, biofilm growth is an essential feature of this process. The goal of this work was to compare the global protein expression patterns of sessile and planktonic grown S. oneidensis cells by two-dimensional (2-D) gel electrophoresis. Mass spectrometry was used as an identification tool of the differentially expressed proteins. An IPG strip of pH 3-10 as well as pH 4-7 was applied for iso-electrofocusing. Analysis of the 2-D patterns pointed out a total of 59 relevant spots. Among these proteins, we highlight the involvement of a protein annotated as an agglutination protein (AggA). AggA is a TolC-like protein which is presumably part of an ABC transporter. Another differentially expressed protein is RibB, an enzyme of the riboflavin biosynthesis pathway. Riboflavin is the precursor molecule of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) and may be necessary for the altered respiratory properties of the biofilm cells versus planktonic cells. Some proteins that were identified indicate an anaerobic state of the biofilm. This anaerobic way of living affects the energy gaining pathways of the cell and is reflected by the presence of several proteins, including those of a heme-utilization system.  相似文献   

5.
6.
Protein expression by planktonic and biofilm cells of Streptococcus mutans   总被引:4,自引:0,他引:4  
Streptococcus mutans, a major causal agent of dental caries, functions in nature as a component of a biofilm on teeth (dental plaque) and yet very little information is available on the physiology of the organism in such surface-associated communities. As a consequence, we undertook to examine the synthesis of proteins by planktonic and biofilm cells growing in a biofilm chemostat at pH 7.5 at a dilution rate of 0.1 h(-1) (mean generation time=7 h). Cells were incubated with (14)C-labelled amino acids, the proteins extracted and separated by two-dimensional electrophoresis followed by autoradiography and computer-assisted image analysis. Of 694 proteins analysed, 57 proteins were enhanced 1.3-fold or greater in biofilm cells compared to planktonic cells with 13 only expressed in sessile cells. Diminished protein expression was observed with 78 proteins, nine of which were not expressed in biofilm cells. The identification of enhanced and diminished proteins by mass spectrometry and computer-assisted protein sequence analysis revealed that, in general, glycolytic enzymes involved in acid formation were repressed in biofilm cells, while biosynthetic processes were enhanced. The results show that biofilm cells possess novel proteins, of as yet unknown function, that are not present in planktonic cells.  相似文献   

7.
Regulation of Rot expression in Staphylococcus aureus   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare‐associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall‐anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA‐negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap‐dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT‐PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA‐related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap‐mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.  相似文献   

10.
Rabbit embryonic stem (rES) cells can be derived from various sources of embryos. However, understanding of the gene expression profile, which distincts embryonic stem (ES) cells from other cell types, is still extremely limited. In this study, we compared the protein profiles of three independent lines of rabbit cells, i.e., fibroblasts, fertilized embryo-derived stem (f-rES) cells, and parthenote-derived ES (p-rES) cells. Proteomic analyses were performed using two-dimensional gel electrophoresis (2-DE) and mass spectrometry. Collectively, the expression levels of 100 out of 284 protein spots differed significantly among these three cell types (p<0.05). Of those differentially expressed spots, 91% were identified in the protein database and represented 63 distinct proteins. Proteins with known identities are mainly localized in the cytoplasmic compartments (48%), nucleus (14%), and cytoskeletal machineries (13%). These proteins were majorly involved in biological functions of energy and metabolic pathways (25%), cell growth and maintenance (25%), signal transduction (14%), and protein metabolisms (10%). When protein expression levels among cell types were compared, six proteins associated with a variety of cellular activities, including structural constituents of the cytoskeleton (tubulins), structural molecule (KRT8), catalytic molecules (α-enolase), receptor complex scaffold (14-3-3 protein sigma), microfilament motor proteins (Myosin-9), and heat shock protein (HSP60), were found highly expressed in p-rES cells. Two proteins related to HSP activity and structural constituent of cytoskeleton in f-rES cells, and one structural molecule activity protein in fibroblasts showed significantly higher expression levels (p<0.05). Marker protein expressions in f-rES and p-rES cells were further confirmed by Western blotting and immunocytochemical staining. This study demonstrated unique proteomic profiles of the three rabbit cell types and revealed some novel proteins differentially expressed between f-rES and p-rES cells. These analyses provide insights into rES cell biology and would invite more in-depth studies toward rES cell applications.  相似文献   

11.
Bacillus cereus, a dairy-associated toxigenic bacterium, readily forms biofilms on various surfaces and was used to gain a better understanding of biofilm development by gram-positive aerobic rods. B. cereus DL5 was shown to readily adapt to an attached mode of growth, with dense biofilm structures developing within 18 h after inoculation when glass wool was used as a surface. Two-dimensional gel electrophoresis (2DE) revealed distinct and reproducible phenotypic differences between 2- and 18-h-old biofilm and planktonic cells (grown both in the presence and in the absence of glass wool). Whereas the 2-h-old biofilm proteome indicated expression of 15 unique proteins, the 18-h-old biofilm proteome contained 7 uniquely expressed proteins. Differences between the microcolony (2-h) proteome and the more developed biofilm (18-h) proteome were largely due to up- and down-regulation of the expression of a multitude of proteins. Selected protein spots excised from 2DE gels were subjected to N-terminal sequencing and identified with high confidence. Among the proteins were catabolic ornithine carbamoyltransferase and L-lactate dehydrogenase. Interestingly, increased levels of YhbH, a member of the sigma 54 modulation protein family which is strongly induced in response to environmental stresses and energy depletion via both sigma(B) and sigma(H), could be observed within 2 h in both attached cells and planktonic cultures growing in the presence of glass wool, indicating that this protein plays an important role in regulation of the biofilm phenotype. Distinct band differences were also found between the extracellular proteins of 18-h-old cultures grown in the presence and in the absence of glass wool.  相似文献   

12.
13.
14.
Abstract Comparison of the whole cell protein profiles of Staphylococcus epidermidis grown in pooled human peritoneal dialysate (HPD) with those of cells grown in nutrient broth (NB) revealed proteins of 27, 39, 45, 54 and 98 kDa which were absent or poorly expressed in NB-grown cells. IgG, but not transferrin, was detected bound to the surface of bacteria grown in HPD. Immunoblotting experiments revealed that IgG antibodies present in pooled HPD recognised staphylococcal protein antigens of 16, 27, 35, 39, 45, 54 and 98 kDa. The 16-, 35- and 39-kDa antigens which were associated with the cytoplasmic membrane were repressed following growth in NB or in HPD supplemented with excess iron.  相似文献   

15.
Although Bordetella pertussis, the etiologic agent of whooping cough, adheres and grows on the ciliated epithelium of the respiratory tract, it has been extensively studied only in liquid cultures. In this work, the phenotypic expression of B. pertussis in biofilm growth is described as a first approximation of events that may occur in the colonization of the host. The biofilm developed on polypropylene beads was monitored by chemical methods and Fourier transform infrared (FT-IR) spectroscopy. Analysis of cell envelopes revealed minimal differences in outer membrane protein (OMP) pattern and no variation of lipopolysaccharide (LPS) expression in biofilm compared with planktonically grown cells. Sessile cells exhibited a 2.4- to 3.0-fold higher carbohydrate/protein ratio compared with different types of planktonic cells. A 1.8-fold increased polysaccharide content with significantly increased hydrophilic characteristics was observed. FT-IR spectra of the biofilm cells showed higher intensity in the absorption bands assigned to polysaccharides (1,200–900 cm−1 region) and vibrational modes of carboxylate groups (1,627, 1,405, and 1,373 cm−1) compared with the spectra of planktonic cells. In the biofilm matrix, uronic-acid-containing polysaccharides, proteins, and LPS were detected. The production of extracellular carbohydrates during biofilm growth was not associated with changes in the specific growth rate, growth phase, or oxygen limitation. It could represent an additional virulence factor that may help B. pertussis to evade host defenses.  相似文献   

16.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

17.
18.
Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs), which are also known to inhibit biofilm formation. The aim of the present studies was to determine whether any cell surface-associated S. aureus proteins have an impact on colony spreading. To this end, we analyzed the spreading capabilities of strains lacking non-essential components of the protein export and sorting machinery. Interestingly, our analyses reveal that the absence of sortase A (SrtA) causes a hyper-spreading phenotype. SrtA is responsible for covalent anchoring of various proteins to the staphylococcal cell wall. Accordingly, we show that the hyper-spreading phenotype of srtA mutant cells is an indirect effect that relates to the sortase substrates FnbpA, FnbpB, ClfA and ClfB. These surface-exposed staphylococcal proteins are known to promote biofilm formation, and cell-cell interactions. The hyper-spreading phenotype of srtA mutant staphylococcal cells was subsequently validated in Staphylococcus epidermidis. We conclude that cell wall-associated factors that promote a sessile lifestyle of S. aureus and S. epidermidis antagonize the colony spreading motility of these bacteria.  相似文献   

19.
20.
We previously isolated phage antibodies from a phage library displaying human single chain antibodies (scFvs) by screening with a mannotriose (Man3)-bearing lipid. Of four independent scFv genes originally characterized, 5A3 gene products were purified as fusion proteins such as a scFv-human IgG1 Fc form, but stable clones secreting 1A4 and 1G4 scFv-Fc proteins had never been established. Thus, bacterial expression systems were used to purify 1A4 and 1G4 scFv gene products as soluble forms. Purification of 1A4 and 1G4 scFv proteins from inclusion bodies was also carried out together with purification of 5A3 scFv protein in order to compare their Man3-binding abilities. The present studies demonstrated that 1A4 and 1G4 scFv proteins have a higher affinity for Man3 than 5A3 scFv protein, which may determine whether scFv-Fc proteins expressed in mammalian cells are retained in the ER or secreted. Furthermore, the inhibitory effects of anti-Man3 1G4 scFv and anti-Tn antigen scFv proteins on MCF-7 cell growth were evaluated. Despite the fact that no obvious difference was detected in cell growth, microscopic observations revealed inhibition of foci formation in cells grown in the presence of the anti-carbohydrate scFv proteins. This finding provides a basis for the development of cancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号