首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.  相似文献   

2.
Cdx1 encodes a mammalian homeobox gene involved in vertebral patterning. Retinoic acid (RA) is likewise implicated in vertebral patterning. We have previously shown that Cdx1 is a direct retinoid target gene, suggesting that Cdx1 may convey some of the effects of retinoid signaling. However, RA appears to be essential for only early stages of Cdx1 expression, and therefore other factors must be involved in maintaining later stages of expression. Based on function and pattern of expression, Wnt family members, in particular Wnt3a, are candidates for regulation of expression of Cdx1. Consistent with this, we confirm prior results which demonstrated that Cdx1 can be directly regulated by Wnt signaling, and identify functional LEF/TCF response motifs essential for this response. We also find that Cdx1 expression is markedly attenuated in a stage- and tissue-specific fashion in the Wnt3a hypomorph vestigial tail, and present data demonstrating that Wnt3a and RA synergize strongly to activate Cdx1. Finally, we show that Cdx1 positively regulates its own expression. These data prompt a model whereby retinoid and Wnt signaling function directly and synergistically to initiate Cdx1 expression in the caudal embryo. Expression is then maintained, at least in part, by an autoregulatory mechanism at later stages.  相似文献   

3.
There is considerable evidence that the Cdx gene products impact on vertebral patterning by direct regulation of Hox gene expression. Data from a number of vertebrate model systems also suggest that Cdx1, Cdx2 and Cdx4 are targets of caudalizing signals such as RA, Wnt and FGF. These observations have lead to the hypothesis that Cdx members serve to relay information from signaling pathways involved in posterior patterning to the Hox genes. Regulation of Cdx1 expression by RA and Wnt in the mouse has been well characterized; however, the means by which Cdx2 and Cdx4 are regulated is less well understood. In the present study, we present data suggesting that Cdx4 is a direct target of the canonical Wnt pathway. We found that Cdx4 responds to exogenous Wnt3a in mouse embryos ex vivo, and conversely, that its expression is down-regulated in Wnt3a(vt/vt) embryos and in embryos cultured in the presence of Wnt inhibitors. We also found that the Cdx4 promoter responds to Wnt signaling in P19 embryocarcinoma cells and have identified several putative LEF/TCF response elements mediating this effect. Consistent with these data, chromatin immunoprecipitation assays from either embryocarcinoma cells or from the tail bud of embryos revealed that LEF1 and beta-catenin co-localize with the Cdx4 promoter. Taken together, these results suggest that Cdx4, like Cdx1, is a direct Wnt target.  相似文献   

4.
5.
Wnt signaling is a key mediator of Cdx1 expression in vivo   总被引:2,自引:0,他引:2  
In the mouse, Cdx1 is essential for normal anteroposterior vertebral patterning through regulation of a subset of Hox genes. Retinoic acid (RA) and certain Wnts have also been implicated in vertebral patterning, although the relationship between these signaling pathways and the regulation of mesodermal Hox gene expression is not fully understood. Prior work has shown that Cdx1 is a direct target of both Wnt and retinoid signaling pathways, and might therefore act to relay these signals to the Hox genes. Wnt and RA are believed to impact on Cdx1 through an atypical RA-response element (RARE) and Lef/Tcf-response elements (LRE), respectively, in the proximal promoter. To address the roles of these regulatory motifs and pathways, we derived mice mutated for the LRE or the LRE plus the RARE. In contrast to RARE-null mutants, which exhibit limited vertebral defects, LRE-null and LRE+RARE-null mutants exhibited vertebral malformations affecting the entire cervical region that closely phenocopied the malformations seen in Cdx1-null mutants. Mutation of the LRE also greatly reduced induction of Cdx1 by RA, demonstrating a requirement for Wnt signaling in the regulation of this gene by retinoids. LRE and LRE+RARE mutants also exhibited vertebral fusions, suggesting a defect in somitogenesis. As Wnt signaling is implicated in somitogenesis upstream of the Notch pathway, it is conceivable that Cdx1 might play a role in this process. However, none of the Notch pathway genes assessed was overtly affected.  相似文献   

6.
7.
8.
9.
10.
11.
Mouse Cdx and Hox genes presumably evolved from genes on a common ancestor cluster involved in anteroposterior patterning. Drosophila caudal (cad) is involved in specifying the posterior end of the early embryo, and is essential for patterning tissues derived from the most caudal segment, the analia. Two of the three mouse Cdx paralogues, Cdx 1 and Cdx2, are expressed early in a Hox-like manner in the three germ layers. In the nascent paraxial mesoderm, both genes are expressed in cells contributing first to the most rostral, and then to progressively more caudal parts of the vertebral column. Later, expression regresses from the anterior sclerotomes, and is only maintained for Cdx1 in the dorsal part of the somites, and for both genes in the tail bud. Cdx1 null mutants show anterior homeosis of upper cervical and thoracic vertebrae. Cdx2-null embryos die before gastrulation, and Cdx2 heterozygotes display anterior transformations of lower cervical and thoracic vertebrae. We have analysed the genetic interactions between Cdx1 and Cdx2 in compound mutants. Combining mutant alleles for both genes gives rise to anterior homeotic transformations along a more extensive length of the vertebral column than do single mutations. The most severely affected Cdx1 null/Cdx2 heterozygous mice display a posterior shift of their cranio-cervical, cervico-thoracic, thoraco-lumbar, lumbo-sacral and sacro-caudal transitions. The effects of the mutations in Cdx1 and Cdx2 were co-operative in severity, and a more extensive posterior shift of the expression of three Hox genes was observed in double mutants. The alteration in Hox expression boundaries occurred early. We conclude that both Cdx genes cooperate at early stages in instructing the vertebral progenitors all along the axis, at least in part by setting the rostral expression boundaries of Hox genes. In addition, Cdx mutants transiently exhibit alterations in the extent of Hox expression domains in the spinal cord, reminding of the strong effects of overexpressing Cdx genes on Hox gene expression in the neurectoderm. Phenotypical alterations in the peripheral nervous system were observed at mid-gestation stages. Strikingly, the altered phenotype at caudal levels included a posterior truncation of the tail, mildly affecting Cdx2 heterozygotes, but more severely affecting Cdx1/Cdx2 double heterozygotes and Cdx1 null/Cdx2 heterozygotes. Mutations in Cdx1 and Cdx2 therefore also interfere with axis elongation in a cooperative way. The function of Cdx genes in morphogenetic processes during gastrulation and tail bud extension, and their relationship with the Hox genes are discussed in the light of available data in Amphioxus, C. elegans, Drosophila and mice.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号