首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.  相似文献   

2.
Coumarin-endcapped tetrabranched liquid copolymers composed of epsilon-caprolactone and trimethylene carbonate (TMC), prepared using pentaerythritol or four-branched poly(ethylene glycol) (PEG) as an initiator, were ultraviolet irradiated to produce photocured solid biodegradable copolymers. The hydrolytic degradation behaviors of photocured films were determined from the weight loss of the films. The initial hydrolysis rate (determined for up to 24 h using a quartz crystal microbalance) was enhanced with aqueous solutions of higher pH. The hydrolysis rate in the early period of immersion was increased with an increase in TMC content, whereas that in the later period (week order) decreased with a increase in TMC content. This inverse relation of composition dependence on the hydrolysis rate between the early and late periods was discussed. Topological measurements using scanning electron microscopy and atomic force microscopy as well as depth profiles of the fluorescein-stained hydrolyzed layer showed that for the pentaerythritol-initiated copolymer, irrespective of copolymer composition, hydrolysis occurred at surface regions and surface erosion proceeded with immersion time. For PEG-based copolymers, both surface erosion and bulk degradation occurred simultaneously. The hydrolyzed surfaces became highly wettable with water and exhibited noncell adhesivity.  相似文献   

3.
Mussels can attach themselves to nearly all types of hard surfaces in wet environments. Such attractive adhesive ability of mussels is believed to rely on the amino acid composition of proteins found near the plaque–substrate interface. Dopamine (DA) is identified as a simplified mimic of mussel proteins, which are rich in 3,4‐dihydroxy‐l ‐phenylalanine and lysine, because it contains both catechol and amine functional groups. In this work, we have first applied this bioinspired adhesive to tackle a dye leaching problem of colorimetric oxygen indicator films, which are widely used to ensure the absence of oxygen inside the package of oxygen‐sensitive materials. Simple immersion of packaging films into a DA solution resulted in poly(DA) deposition, decreasing the water contact angle of the films from 105° to 65°. The poly(DA) coating could reduce the thionine leakage of the UV‐activated oxygen indicator film. The effects of poly(DA) coating were found to be dependent on the DA solution pH, the coating time, and the DA concentration. The film resistant to dye leaching lost its dye color by 5 min UVB irradiation and regained the color in the presence of oxygen, demonstrating that it functioned successfully as UV‐activated oxygen indicators. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 513–519, 2013  相似文献   

4.
A series of new nitric oxide (NO) releasing copolymers have been prepared by covalently anchoring alkyldiamine side chains onto a polymethacrylate-based polymer backbone, followed by NO addition to form the desired pendant diazeniumdiolate structures. The resulting diazeniumdiolated copolymers were characterized via UV spectroscopy, and their proton-driven decomposition to release NO was also examined by UV and FTIR as well as chemiluminescence. Polymers with up to 22.1 mol % of incorporated amine sites that can be converted to corresponding diazeniumdiolates could be prepared, and such polymers release up to 0.94 micromol/mg of NO. Further, novel NO releasing polymeric coatings were formulated by doping one of the new polymethacrylate-based NO donors within inert polymeric matrixes. Biodegradable poly(lactide-co-glycolide) was employed as a film additive to greatly prolong the NO release of such coatings by continuously generating protons within the organic phase of the polymeric films, thereby driving decomposition of the diazeniumdiolates.  相似文献   

5.
Ultrathin poly(methyl methacrylate) PMMA films were prepared on gold substrates by spin coating PMMA dissolved in toluene. By varying the concentration of PMMA, spin coating speed and curing condition, we obtained very smooth and ultrathin PMMA films. The PMMA films were transformed into highly reactive film containing carboxylic functionalities using UV/O(3) irradiation. These films were shown to remain stable and reactive for at least one week. We then demonstrated the application of the UV/O(3) treated PMMA films for the detection of microRNAs using a label-free detection method called total internal reflection ellipsometry (TIRE). A limit of detection of 10 pM was established. The technique proposed here is a simple and quick method for generating carboxylic functional films for label-free bioanalytical detection techniques.  相似文献   

6.
Polymeric materials based on epsilon-caprolactone (CL), 1,5-dioxepan-2-one (DXO), and trimethylene carbonate (TMC) were prepared and evaluated as possible candidates for polymer-on-multielectrode (PoM) applications. CL was copolymerized with either DXO or TMC in the presence of the diol initiator 1,4-benzenedimethanol (BDM). The ring-opening polymerization experiments, carried out in bulk and using tin(II) catalysis, yielded the desired low molecular weight random copolymer diols, as evidenced by NMR, IR, MALDI-ToF MS, and DSC techniques. Upon reaction with acryloyl chloride, the corresponding diacrylate end-capped copolymers were obtained. The latter were characterized by NMR and IR spectroscopy, and their photocross-linking (in the presence of a UV initiator) was followed by ATR-FTIR spectroscopy. Transparent and soft thin films of the copoly(ether-ester) and copoly(ester-carbonate) diacrylates were prepared and cured under UV irradiation. The resulting polymeric films showed good biocompatibility properties as far as in vitro neural stem cells proliferation and differentiation to neurons and astrocytes are concerned. Noteworthy are the beneficial effects obtained upon preconditioning the copolymers by means of the cell-culture medium and the excellent properties shown particularly by the CL-TMC copolymer. Moreover, preliminary results show that microchannel formation by photocuring is possible with the synthesized polymers.  相似文献   

7.
A new solventless photocurable film-coating system was investigated in which nonpareil beads were coated in a minicoating pan with liquid prepolymer (L) and powdered solid pore-forming agents (S) and cured by UV light. Release from the coating could by altered by changing the material, the number of layers, and the coating thickness. Immediate release of a blue dye contained in the nonpareils was obtained with sodium starch glycolate as a pore former that swelled the coating and yielded large pores; through these pores the dye quickly released while leaving behind the scaffold provided by the photocured prepolymer. Simple pore formers (lactose and sodium chloride) dissolved away without swelling and provided a more sustained release. The nature of the scaffold and pore structure of the coating were determined by simultaneously monitoring the release of sodium chloride from the coating and blue dye from the beads. At least 50% of the sodium chloride that was incorporated into the coating released before the dye released through the coating, except at an S/L ratio (ratio of the amount of solid pore-forming agent to the volume of liquid prepolymer) of 2.4, where 40% of the sodium chloride was released before the release of dye. The coupling between dye release and pore formation was found to be dependent on the S/L ratio of the coating. Simulation based on percolation theory showed that the coupling of pore formation and dye release was higher when the variance in tortuosity was lower. The coating was photostable and could withstand normal handling stress. Published: July 13, 2007  相似文献   

8.
We describe the synthesis of a novel biotinylated nanotextured degradable hydrogel that can be rapidly surface engineered with a diverse range of biotinylated moieties. The hydrogel is synthesized by reacting methacrylated biotin-PEG with dimethacrylated P LA-b- PEG-b-P LA (LPLDMA, PEG = poly(ethylene glycol), PLA = poly(lactic acid)),or dimethacrylated PEG-b-P LA-b- PEG (PLPDMA). Methacrylated biotin-PEG is prepared by reacting biotin-PEG-OH with methacrylic anhydride. Biotin-PEG-OH is prepared by reacting alpha-hydroxy-omega-amine PEG with N-hydroxysuccinimide-biotin. Confirmation of the final product is determined using (1)H NMR and Fourier transform infrared spectroscopy (FTIR). The integrity and surface presentation of the biotin units is observed spectrophotometrically using the HABA/avidin assay. To produce nanostructured polymer topography, a self-assembling lyotropic liquid crystalline mesophase is used as a polymerization template, generating biotinylated hydrogels with highly organized lamellar matrix geometry. Traditionally processed isotropic hydrogels are used for comparison. Scanning electron microscopy shows that isotropic hydrogels have a smooth glassy appearance while lamellar templated hydrogels have defined surface topographical features that enhance preosteoblast human palatal mesenchymal cell (HEPM) attachment. Engineering the surfaces of the hydrogels with cell adhesive Arg-Gly-Asp (RGD) peptide sequences using the biotin-avidin interaction significantly enhances cell attachment. Surface engineering of cell adhesive peptides in conjunction with the lamellar template induced surface topography generates additive enhancements in cell attachment.  相似文献   

9.
The influence of polylactic acid (PLA) surface films on the pattern of cell behavior was studied. The human dermal fibroblasts were cultivated on PLA covered glasses. The hydrophobic nature of PLA films depends on the availability of polymer solvent in the film preparation. PLA films obtained from a more polar solvent--aceton--appeared to be more hydrophilic than those obtained from methylene chloride. More hydrophilic polymer films also appeared to be more preferable for cell cultivation, and human dermal fibroblasts demonstrated a better adhesion and proliferation on hydrophilic rather than on hydrophobic PLA films.  相似文献   

10.
Hydrophobins are amphipathic self-assembling proteins secreted by filamentous fungi that exhibit remarkable ability to modify synthetic surfaces. Thin coatings of Sc3 hydrophobin isolated from the wood-rotting fungus Schizophyllum commune were prepared via spin coating and adsorption techniques onto polymeric surfaces. Surface morphology and nanotribological characteristics of the films were evaluated using lateral force microscopy (LFM) and nanoindentation techniques. This paper reports the first observation of reduction in nanoscale relative surface friction of Sc3 hydrophobin protein modified polymeric surfaces. Relative friction coefficients were dramatically reduced and hydrophilicity increased for polymer surfaces modified with Sc3 hydrophobin thin films. Morphology of the protein films as well as degree of surface modification was observed to be a function of film formation technique and composition of the substrate.  相似文献   

11.

In this present work, we synthesized poly (lactic acid) (PLA)/curcumin composite films using a twin-screw extruder and evaluated their mechanical, optical, thermal, and barrier properties. The composite films were characterized using Fourier transform infrared spectroscopy (FTIR), Universal testing machine (UTM), thermogravimetric analysis (TGA), ultraviolet-visible spectrometry (UV-visible), colorimetry, goniometry, and oxygen permeation analysis. The results confirmed that, the composite films exhibited better ultraviolet radiation-blocking properties and hydrophobicities than did the reference PLA film. The oxygen and water vapor permeabilities of the composite films were also lower than those of the reference PLA film.

  相似文献   

12.
Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces.  相似文献   

13.
In-stent restenosis is a process that occurs in 10-50% of cases currently treated with stent and it is caused by an abnormal smooth muscle cell (SMC) proliferation and migration in the vascular lumen. One of the most promising strategy to reduce restenosis is stent coating with biodegradable polymers to deliver in situ anti-proliferative drugs. Poly(D,L)lactic acid (P(D,L)LA), one of the most interesting candidate for stent coating, has been observed to induce inflammation and neointimal proliferation. In our laboratory, we developed P(D,L)LA enriched with Vitamin E (Vit.E), an anti-oxidative and anti-inflammatory agent that reduces also SMC proliferation. In order to evaluate the in vitro cellular behaviour of neointima cells onto Vitamin E-enriched P(D,L)LA, cell adhesion and proliferation along with the expression of two SMC migration markers (MMP-9 and hyaluronic acid receptor CD44) were measured in rat vascular SMC A10 cells seeded onto control P(D,L)LA (PLA) and P(D,L)LA films containing 10-30% (w/w) Vit.E (PLA10-30). Cell adhesion, proliferation and MMP-9 production were unaffected by the Vit.E presence in the PLA films after 24 h, while proliferation was slowed or blocked after 48 and 72 h onto PLA10, 20 and 30. MMP-9 production was almost blocked and CD44 density decreased significantly after 72 h for cells grew onto PLA30 compare to cells seeded onto PLA. These data indicate that Vit.E-enriched P(D,L)LA could be an interesting polymer for stent coating.  相似文献   

14.
A bifunctional copolymer series of (4-vinylbenzyl)phosphonic acid diethylester and N-acryloxysuccinimide was developed as an interlayer with the aim of immobilizing proteins on titanium surfaces. Copolymers with varying compositions were synthesized, and an alternating copolymerization of the two monomers was found. The copolymers form ultrathin films of about 2-8 nm on titanium surfaces in a simple dipping process, as estimated from the attenuation of the titanium X-ray photoelectron spectroscopy (Ti-XPS) signal. The films were characterized by infrared spectroscopy, XPS, and time-of-flight secondary ion mass spectrometry. The results indicate that the immobilization is due to phosphonate groups, and thus the phosphonate content of the copolymers is decisive for the final film thickness. These polymer films were examined for their potential protein binding capacity by using trifluoroethylamine derivatization and subsequent XPS analysis as a reactivity assay.  相似文献   

15.
Ultrathin poly(methyl methacrylate) (PMMA) stereocomplex films with macromolecularly double-stranded regular nanostructures were prepared by layer-by-layer assembly of isotactic and syndiotactic PMMAs on solid surfaces. Antibodies were immobilized through the Fc region-capturing protein A, which had been physically adsorbed on the complex film, and the binding of antigens to immobilized antibodies was quantitatively investigated by the quartz crystal microbalance technique. Greater amounts of protein A with native forms were adsorbed on the complex film than those on conventional single-component PMMA films. Antibodies with high target-binding activities were also immobilized on the complex film. A greater amount of antigens could be detected on the complex film. The activity of protein A was maintained on the complex for a long time even within a dried state. The mechanism for the preservation of protein native forms on the complex surface was speculated by analyzing the physical adsorption of proteins with various secondary structures. Stereocomplex films can be utilized as novel coating nanomaterials for efficiently detecting protein-protein interactions.  相似文献   

16.
Metastasis mechanisms depend on cell metabolism changes, migration and adhesion to different tissues. To understand their choice of interaction site, the tumoral cell adhesion to model surfaces was studied. The response of Caco-2 tumoral cells cultured on polyelectrolyte film-functionalized surfaces with or without adhesion proteins (fibronectin or collagen IV) was analyzed. Using the layer-by- layer method, multilayer films were prepared with cationic poly(allylamine hydrochloride) and anionic poly(sodium 4-styrenesulfonate) polyelectrolytes. Film surface wettability was evaluated. The electrochemical impedance spectroscopy analyses were carried out to control the elaborated surfaces on which Caco-2 tumoral cells were cultured. The cell velocity was studied by video-microscopy and a cell colorimetric assay (WST-1) was used to quantify cell viability. The film surface parameters as well as the protein nature and localization in the film were found to modulate cell response. Results demonstrated that the cancer cell motility and proliferation were higher when cultured onto pure collagen located above the polyelectrolyte film and that the reverse surprisingly was observed when proteins were inserted into the polyelectrolyte film. Data also showed that cell motility was correlated with a high charge transfer resistance (Rct) and a low surface free energy (SFE) polar component (electron donor character). This relationship was valid only for pure external proteins. Thus, fibronectin exhibited a low Rct and a high SFE polar component, which decreased cell motility and proliferation.  相似文献   

17.
Polylactide (PLA) is viewed as a potential material to replace synthetic plastics (e.g., poly(ethylene terephthalate) (PET)) in food packaging, and there have been a number of developments in this direction. However, for PLA to be competitive in more demanding uses such as the packaging of oxygen-sensitive foods, the oxygen permeability coefficient (OP) needs to be reduced by a factor of ~10. To achieve this, a layer-by-layer (Lbl) approach was used to assemble alternating layers of montmorillonite clay and chitosan on extruded PLA film surfaces. When 70 bilayers were applied, the OP was reduced by 99 and 96%, respectively, at 20 and 50% RH. These are, to our knowledge, the best improvements in oxygen barrier properties ever reported for a PLA/clay-based film. The process of assembling such multilayer structures was characterized using a quartz crystal microbalance with dissipation monitoring. Transmission electron microscopy revealed a well-ordered laminar structure in the deposited multilayer coatings, and light transmittance results demonstrated the high optical clarity of the coated PLA films.  相似文献   

18.
Kim JC  Jung J  Rho Y  Kim M  Kwon W  Kim H  Kim IJ  Kim JR  Ree M 《Biomacromolecules》2011,12(7):2822-2833
Two new DNA-mimicking brush polymers were synthesized: poly[oxy(11-(3-(9-adeninyl)propionato)-undecanyl-1-thiomethyl)ethylene] (PECH-AP) and poly[oxy(11-(5-(9-adenylethyloxy)-4-oxopentanoato)undecanyl-1-thiomethyl)ethylene] (PECH-AS). These polymers were found to be thermally stable up to 220 °C and could be applied easily by conventional coating processes to produce good quality films. Interestingly, both brush polymers formed molecular multibilayer structures to provide an adenine-rich surface. Despite the structural similarities, PECH-AS surprisingly exhibited higher hydrophilicity and better water sorption properties than PECH-AP. These differences were attributed to the chemical structures in the bristles of the polymers. The adenine-rich surfaces of the polymer films demonstrated selective protein adsorption, suppressed bacterial adherence, facilitated HEp-2 cell adhesion, and exhibited good biocompatibility in mice. However, the high hydrophilicity and good water sorption characteristics of the PECH-AS film suggest that this brush polymer is better suited to applications requiring good biocompatibility and reduced chance of bacterial infection compared with the PECH-AP film.  相似文献   

19.
Synthesis and properties of malic acid-containing functional polymers.   总被引:4,自引:0,他引:4  
Poly-L-lactides containing beta-alkyl alpha-malate-units were prepared by ring-opening copolymerizations of L-lactide with 3-(s)-[(benzyloxycarbonyl)methyl]- (BMD) and 3-(s)-[(dodecyloxycarbonyl)methyl]-1,4-dioxane-2,5-diones (DMD). The solution-cast films of these copolymers were alkali-treated to form a carboxyl-functionalized surface on which cell-binding Arg-Gly-Asp tripeptide (RGD) was immobilized with dicyclohexylcarbodiimide as coupling agent. For the copolymer of L-lactide and BMD the benzyl groups were removed by catalytic hydrogenolysis to obtain a fully carboxyl-functionalized copolymer (PLGM), and RGD was immobilized on the surface of its cast film. All the RGD-immobilized films thus prepared exhibited improved cell attachment compared with the original films. The cell attachment increased with increasing amount of immobilized RGD, which depended on the composition of the alpha-malate units in the copolymer. The RGD-immobilized PLGM films were degraded rapidly during the cell culture, while the RGD-immobilized films of the beta-alkyl alpha-malate-containing polymers survived the cell culture with little degradation. The rate of hydrolysis increased with increasing content of alpha-malate units for both series, depending on the structure of the protecting groups of the beta-carboxyl. These results suggest that the RGD-immobilized polymers could be a new class of functional bioresorbable polymer having improved cell-attachment and adjustable hydrolysis rate.  相似文献   

20.
Model tissue engineering scaffolds based on photocurable resin mixtures with sodium chloride have been prepared for optical imaging studies of cell attachment. A photoactivated ethoxylated bisphenol A dimethacrylate was mixed with sieved sodium chloride (NaCl) crystals and photocured to form a cross-linked composite. Upon soaking in water, the NaCl dissolved to leave a porous scaffold with desirable optical properties, mechanical integrity, and controlled porosity. Scaffolds were prepared with salt crystals that had been sieved to average diameters of 390, 300, 200, and 100 microm, yielding porosities of approximately 75 vol %. Scanning electron microscopy and X-ray microcomputed tomography confirmed that the pore size distribution of the scaffolds could be controlled using this photocuring technique. Compression tests showed that for scaffolds with 84% (by mass fraction) salt, the larger pore size scaffolds were more rigid, while the smaller pore size scaffolds were softer and more readily compressible. The prepared scaffolds were seeded with osteoblasts, cultured between 3 and 18 d, and examined using confocal microscopy. Because the cross-linked polymer in the scaffolds is an amorphous glass, it was possible to optically image cells that were over 400 microm beneath the surface of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号