首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars.  相似文献   

2.
Biodegradable hollow capsules encapsulating proteins were prepared via layer-by-layer assembly of chitosan and dextran sulfate on protein-entrapping mesoporous silica particles and the subsequent removal of the silica. The enzymatic degradation of the capsules in the presence of chitosanase was explored by scanning electron microscopy (SEM). With increasing time, the chitosan component was degraded by chitosanase, and the capsules began to deform and were finally destroyed. Sustained release of the encapsulated proteins was attained by using the enzymatic degradation of the hollow capsules. The release behavior was successfully manipulated by altering the charge of capsule surface.  相似文献   

3.
The goal of this paper was to establish the durability profile of antibacterial multilayer thin films under storage and usage conditions. Thin films were built on stainless steel (SS) by means of a layer-by-layer process alternating a negatively charged polyelectrolyte, polyacrylic acid, with a cationic antibacterial peptide, nisin. SS coupons coated with the antibacterial film were challenged under environmental and usage conditions likely to be encountered in real-world applications. The change in antibacterial activity elicited by the challenge was used as an indicator of multilayer film resistance. Antibacterial SS samples could be stored for several weeks at 4°C in ambient air and antibacterial films were resistant to dipping and mild wiping in water and neutral detergent. The multilayer coating showed some weaknesses, however, that need to be addressed.  相似文献   

4.
The goal of this paper was to establish the durability profile of antibacterial multilayer thin films under storage and usage conditions. Thin films were built on stainless steel (SS) by means of a layer-by-layer process alternating a negatively charged polyelectrolyte, polyacrylic acid, with a cationic antibacterial peptide, nisin. SS coupons coated with the antibacterial film were challenged under environmental and usage conditions likely to be encountered in real-world applications. The change in antibacterial activity elicited by the challenge was used as an indicator of multilayer film resistance. Antibacterial SS samples could be stored for several weeks at 4°C in ambient air and antibacterial films were resistant to dipping and mild wiping in water and neutral detergent. The multilayer coating showed some weaknesses, however, that need to be addressed.  相似文献   

5.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

6.
Huang R  Du Y  Yang J  Fan L 《Carbohydrate research》2003,338(6):483-489
A new method for the chemical modification of chitosan sulfate was used to prepare N-propanoyl-, N-hexanoyl- and N,O-quaternary substituted chitosan sulfate. Structural analysis by elemental analysis, FTIR, 13C NMR, and 1H NMR spectroscopy, and gel-permeation chromatography showed that these methods could conveniently be used for the introduction of functional groups. The influences of the acyl or quaternary groups on the anticoagulant activity of the polysaccharides were studied with respect to activated partial thromboplastin time (APTT) thrombin time (TT), and prothrombin time (PT). The propanoyl and hexanoyl groups increased the APTT activity, and the propanoyl groups also increased the TT anticoagulant activity slightly, while the N,O-quaternary chitosan sulfate showed only a slight TT coagulant activity.  相似文献   

7.
The binding of dextran sulfates (DSs) with varying chain lengths to phosphatidylcholine multilamellar vesicles was investigated as a function of polyelectrolyte, NaCl, and Ca2+ concentration. Attractive forces between negatively charged polyelectrolytes and zwitterionic phospholipids arise from the assembly of calcium bridges. The formation of calcium bridges between the sulfate groups on the dextran sulfate and the phosphate group of the lipid results in increased calcium binding in mixtures of DS and 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). At high NaCl concentration, the plateau adsorption of DS 500 is increased. The strength of dextran sulfate binding to DMPC is reflected in the changes of the 2H NMR quadrupolar splittings of the headgroup methylenes. Association forces increase with the number of calcium bridges formed. Low-molecular-weight DS does not bind to DMPC surfaces whereas longer-chain DSs strongly influence headgroup structure as a result of strong association. DS binding increases with increasing concentration; however, further association of the polyelectrolyte can be promoted only if negative charges are sufficiently screened. DS binding to lipid bilayers is a complicated balance of calcium bridging and charge screening. From our data we postulate that the structure of the adsorbed layer resembles a lattice of DS strands sandwiched between the bilayer lamellae.  相似文献   

8.
Light-induced storage in layer-by-layer films of chitosan and an azo dye   总被引:2,自引:0,他引:2  
The buildup of layer-by-layer (LBL) films from chitosan and the azodye Ponceau-S (PS) was investigated under various experimental conditions, and the resulting films were used in optical storage experiments. The kinetics for the writing process in optical storage was faster for LBL films prepared at low pHs, probably because the films had a larger free volume for isomerization of the chromophores. The nanostructured nature of the LBL films also affected the crystallinity of chitosan, which was considerably decreased in this type of film as chitosan became protonated because of the electrostatic interactions between adjacent layers.  相似文献   

9.
Chitosan, a cationic polysaccharide, has been found to improve the surface activity of lung surfactant extracts in the presence of various inhibitors. It has been proposed that chitosan binds to anionic lipids (e.g. phosphatidyl glycerols) in lung surfactants, producing stable lipid films at the air-water interface. This binding also reverses the net charge of the surfactant aggregates, from negative to positive. Unfortunately, positively charged aggregates may adsorb or interact with the negatively charged epithelial tissue, leading to poor surfactant performance. To address this issue an anionic polysaccharide, dextran sulfate (dexS), was used as a secondary coating to reverse the charge of chitosan-lung surfactant extracts without affecting the surface activity of the preparation. The dynamic surface tension and zeta potential of bovine lipid extract surfactant (BLES) containing chitosan chloride (chiCl) and dexS were evaluated as a function of dexS concentration. These studies were conducted in the absence and presence of sodium bicarbonate buffer, and in the absence and presence of bovine serum used as model inhibitor. It was determined that using an appropriate concentration of dexS, especially at physiological pH, it is possible to restore the negative charge of the surfactant aggregates, and retain their surface activity, even in the presence of bovine serum. High concentrations of dexS affect the binding of chiCl to BLES, and the surface activity of the preparation.  相似文献   

10.
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.  相似文献   

11.
A recently developed method for surface modification, layer-by-layer (LbL) assembly, has been applied to silicone, and its ability to encourage endothelial cell growth and control cell growth patterns has been examined. The surfaces studied consisted of a precursor, with alternating cationic polyethyleneimine (PEI) and anionic sodium polystyrene sulfonate (PSS) layers followed by alternating gelatin and poly-d-lysine (PDL) layers. Film growth increased linearly with the number of layers. Each PSS/PEI bilayer was 3 nm thick, and each gelatin/PDL bilayer was 5 nm thick. All layers were more hydrophilic than the unmodified silicone rubber surface, as determined from contact angle measurements. The contact angle was primarily dictated by the outermost layer. Of the coatings studied, gelatin was the most hydrophilic. A film of (PSS/PEI)4/(gelatin/PDL)4/ gelatin was highly favorable for cell adhesion and growth, in contrast to films of (PSS/PEI)8 or (PSS/PEI)8/PSS. Cell growth patterns were successfully controlled by selective deposition of microspheres on silicone rubber, using microcontact printing with a silicone stamp. Cell adhesion was confined to the region of microsphere deposition. These results demonstrate that the LbL self-assembly technique provides a general approach to coat and selectively deposit films with nanometer thickness on silicone rubber. Furthermore, they show that this method is a viable technique for controlling cellular adhesion and growth.  相似文献   

12.
Direct current (DC) stimulation has been used to promote bone repair and osteogenesis, but problems associated with the implanted metal electrodes may limit its application and compromise the therapeutic results. The replacement of the metal electrodes with a biodegradable conductive polymer film can potentially overcome these problems. In our work, polypyrrole/chitosan films comprising polypyrrole nanoparticles dispersed in a chitosan matrix were prepared. The polypyrrole/chitosan film meets the requirements for DC delivery, as indicated by its electrical conductivity, biodegradability, and mechanical properties. The film supports osteoblast growth to the same degree as dentine discs (a bone‐like mineralized substrate), confirming that it is non‐cytotoxic. Our results showed that optimal DC stimulation was achieved with 200 µA for 4 h per day, and under this condition, osteoblast metabolic activity on Day 7 increased by 1.8‐fold over that without DC stimulation. To further improve osteogenesis on the polypyrrole/chitosan film, bone morphogenetic protein‐2 (BMP‐2) was covalently immobilized on the film surface. Osteoblasts cultured on the BMP‐2‐functionalized polypyrrole/chitosan film and subjected to the optimal DC stimulation exhibited a significant increase in cellular metabolic activity (2.3‐fold on Day 7), ALP activity (1.7‐fold on Day 21) and mineralization (twofold on Day 21) over those cultured on polypyrrole/chitosan film without DC stimulation. Osteogenic gene expression results showed that BMP‐2 and DC stimulation by itself enhanced osteoblast differentiation, and a combination of these two factors resulted in synergistic effects on osteoblast differentiation and maturation. Biotechnol. Bioeng. 2013; 110: 1466–1475. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Encapsulated cells were formed from the assembly of cationic and anionic alternating layers using a number of polyelectrolyte-based systems. Chitosan, alginate, hyaluronic acid, and oligonucleotides were used as polyelectrolytes to encapsulate individual E. coli cells, which were used as a model. Zeta potential measurements taken for both chitosan/alginate and chitosan/hyaluronic acid systems indicate successful layer-by-layer (LbL) deposition and gave full reversal of the surface change eight times. Layer adsorption was further observed by fluorescence microscopy, and, through a newly developed protocol for sample preparation, transmission electron microscopy micrographs clearly showed the presence of LbL assembly on the outer layer of the cell membrane, in the nanometer range. A second generation of E. coli cells could be grown from encapsulated first generation cells, demonstrating that the cellular activity was not affected by the presence of polyelectrolyte multilayers. Hybridization between attached oligonucleotide sequences and the complementary sequence was demonstrated by both fluorescence spectroscopy and microscopy. Fluorescence energy transfer data recorded after hybrid formation showed that at a molar ratio of 10:20 (donor:acceptor), Q and I were 92.3% and 52.5%, respectively, which suggests that fluorescein fluorescence was quenched by 92.3% and that the fluorescence of rhodamine was enhanced by 52.5%. Oligonucleotide incorporation was stabilized by deposition of four alternating layers, hence offering not only the potential use of the encapsulated cell as a bio-recognition system but also its application in a number of fields such as oligonucleotide delivery, gene therapy, and the use of DNA as an immunocompatible coating.  相似文献   

14.
Films consisting of a blend of a chitosan hydrogel and a conductive polymer, polyaniline (PANI), were prepared and characterized for their electrical and mechanical properties. Polyaniline in emeraldine base (EB) form was dispersed in chitosan solution and blend films were obtained by solution casting. The PANI particles in the blend films were then doped with HCl where we observed reductions in the film tensile strength and Young's modulus by about 30%, but the films electrical conductivity increased by 6 orders of magnitude. The highest electrical conductivity of the blend films was of the order 10−4 S/cm. The electrical and mechanical properties of the films varied with polyaniline content, acid dopant type, acid dopant concentration, and doping time.  相似文献   

15.
基因治疗的效果严重依赖于基因载体。与传统包封技术相比,在自组装技术基础上发展起来的以DNA为聚阴离子,与荷正电的高分子材料在溶液中形成纳米粒的方法,已成为目前最重要的非病毒基因载体制备手段,具有良好的应用前景。采用层层自组装(layer-by-layer assembly,LbL)技术可提高基因装载率,其优势还在于纳米粒表面性质的可控性:在温和的条件下实现多种材料在载体表面的固定,实现载体多功能化等。本文将对近年来国内外有关层层自组装纳米粒作为非病毒基因载体的研究进展以及本课题组在此方向的研究进行简要综述。  相似文献   

16.
The overall objective of our research is to produce polyanion/chitosan nanoparticulate oral delivery systems for insulin. Specific objectives of the present study were to study dextran sulfate or alginate complexation with chitosan on mean particle size, insulin association efficiency, loading capacity and release profile. Nanoparticles were formed by ionotropic complexation and coacervation between polyanions (dextran sulfate and alginate) and chitosan. Diameter was evaluated with photon correlation spectroscopy, polymer interaction was confirmed by DSC and FTIR and particle morphology was assessed by SEM and TEM. Mean nanoparticle diameter ranged from 423 to 850 nm, insulin association efficiency from 63 to 94% and loading capacity from 5 to 13%. Dextran sulfate provided highest insulin association efficiency and retention of insulin in gastric simulated conditions. These nanoparticle systems show promise as insulin and potentially other therapeutic polypeptides carriers.  相似文献   

17.
Yu DG  Lin WC  Yang MC 《Bioconjugate chemistry》2007,18(5):1521-1529
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.  相似文献   

18.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

19.
Polyelectrolyte microcapsules (PEMCs) have been prepared by coating red blood cells with the polyelectrolytes poly(styrenesulfonate), poly(allylamine hydrochloride), and dextran sulfate applying the layer-by-layer technique with subsequent dissolution of the core. The capsule permeability for human serum albumin (HSA) was studied as a function of the ionic strength and pH by means of confocal microscopy. PEMCs produced with dextran sulfate and poly(allylamine hydrochloride) show a significant increase in permeability for HSA at salt concentrations over 1 mM. For PEMCs prepared with poly(styrenesulfonate) and poly(allylamine hydrochloride) the limiting salt concentration is 5 mM. No pH dependence for permeation was observed. A correlation between the permeation and adsorption of HSA on the PEMC walls was investigated. Finally, a mechanism for the permeability, combining electrostatic interactions, and the presence of pores in the polymer layers is presented confirmed by the considerable increase of permeation of charged molecules in the presence of salt and the permeation of neutral molecules regardless of the ionic strength.  相似文献   

20.
The formation of colloids based on polyelectrolyte complexes (PECs) of biopolymers was investigated through the complexation between two charged polysaccharides, chitosan as polycation, and dextran sulfate as polyanion. The slow dropwise addition of components, generally used for the formation of PECs, allowed to elaborate both cationic or anionic particles with an excess of chitosan or dextran sulfate, respectively. The PEC particles featured a core/shell structure, the hydrophobic core resulting from the segregation of complexed segments whereas excess component in the outer shell ensured the colloidal stabilization against further coagulation. Considering the host/guest concept for the formation of PECs, the influence of the molecular weight of components on particles sizes could be well explained by the chain length ratios of the two polymers. As an irreversible flocculation occurred with a dropwise approach for both cationic and anionic PEC particles when the mixing ratio was close to unity, a more versatile, and simpler to setup, method was designed: the one-shot addition of one solution to the other. Because process of addition is faster than the flocculation, cationic or anionic particles could be elaborated irrespective of the order of addition of the reactant. Characterization of these particles by quasielastic light scattering, electrophoresis, and scanning electron microscopy revealed very similar properties to those obtained by a slow dropwise approach. Critical coagulation concentrations of 0.12 and 0.09 M (with sodium chloride) for cationic and anionic particles evidenced a mostly electrostatic stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号