首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo WX  Huang KX 《Biopolymers》2004,74(3):248-255
Poly(dimer acid-brassylic acid) [P(DA-BA)] copolymers and poly(dimer acid-pentadecandioic acid) [P(DA-PA)] copolymers were prepared by melt polycondensation of the corresponding mixed anhydride prepolymers. The copolymers were characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle x-ray powder-diffraction, and thermal gravimetric analysis (TGA). In vitro studies show that all the copolymers are degradable in phosphate buffer at 37 degrees C, and leaving an oily dimer acid residue after hydrolysis for the copolymer with high content of dimer acid. The release profiles of hydrophilic model drug, ciprofloxcin hydrochloride, from the copolymers, follow first-order release kinetics. All the preliminary results suggested that the copolymer might be potentially used as drug delivery devices.  相似文献   

2.
A systematic study on the synthesis, characterization, and polymerization of ricinoleic acid (RA) lactone is reported. Ricinoleic acid lactones were synthesized by refluxing pure ricinoleic acid in chloroform (10 mg/mL) with dicyclohexylcarbodimide and (dimethylamino)pyridine as catalyst. Purification of RA lactones was performed by silica gel chromatography. The reaction resulted in a 75% yield of ricinoleic acid lactones. IR and NMR analysis confirmed the formation of cyclic compounds. Polymerization of the ricinoleic acid lactones with catalysts commonly used for ring-opening polymerization of lactones, under specific reaction conditions, resulted in oligomers. Copolymerization with lactide (LA) by ring-opening polymerization, using Sn(Oct) as catalyst, yielded copolyesters with molecular weights (M(w)) in the range of 5000-16000 and melting temperatures of 100-130 degrees C for copolymers containing 10-50% w/w ricinoleic acid residues. Degradation studies of the copolymers were performed in 0.1 M phosphate buffer solution, pH 7.4, at 37 degrees C. P(LA-RA)s with up to 20% w/w RA slowly degraded and released only approximately 7% of its lactic acid content after 60 days of study, while pure PLA under similar conditions released more than 20% of its lactic acid content. On the other hand, copolyesters containing more then 20% w/w RA degraded and released lactic acid faster than pure PLA due to the low crystallinity of the copolymers.  相似文献   

3.
Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed.  相似文献   

4.
Statistical and block copolymers based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly[oligo(ethylene glycol) methylether methacrylate] (POEGMEMA) were modified with 4-pentenoic anhydride or 4-oxo-4-(prop-2-ynyloxy)butanoic anhydride to generate polymers with pendant vinyl or acetylene, respectively. Subsequent thiol-ene or thiol-yne reaction with thioglycolic acid or 2-mercaptosuccinic acid leads to polymers with carboxylate functionalities, which were conjugated with cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) to generate a drug carrier for Pt-drugs. Only the polymers modified with 2-mercaptosuccinic acid resulted in the formation of soluble well-defined polymers with gel formation being prevented. Due to the hydrophobicity of the drug, the block copolymers took on amphiphilic character leading to micelle formation. The micelles were in addition crosslinked to further stabilize their structure. Pt-containing statistical copolymer, micelles, and crosslinked micelles were then tested regarding their cellular uptake by the A549 lung cancer cell line to show a superior uptake of crosslinked micelles. However, due to the better Pt release of the statistical copolymer, the highest cytotoxicity was observed with this type of polymer architecture.  相似文献   

5.
Krasko MY  Domb AJ 《Biomacromolecules》2005,6(4):1877-1884
The degradation process of poly(ricinoleic-co-sebacic-ester-anhydride)s in buffer solution was investigated by following the composition of the degradation products released into the degradation medium and the degraded polymer. The first week of degradation was characterized by the hydrolysis of the anhydride bonds and significant release of sebacic acid (SA). The remaining oligoesters of SA and ricinoleic acid (RA) degraded into shorter oligoesters composed of RA ester dimers, trimers, and tetramers as well as dimers of RA-SA. To confirm and determine the hydrolytic behavior of the degradation products, short oligoesters of sebacic and ricinoleic acid were synthesized and degraded. It was established that during the hydrolysis under physiological conditions the degradation products have a composition and water absorption similar to those of the synthesized oligoesters.  相似文献   

6.
A new injectable biodegradable hydrogel system with thermosensitive sol-gel transition behavior was developed. A series of A-B-A triblock copolymers consisting of Pluronic copolymer end-capped with D- or L-lactic acid oligomers (PL-LA(n)) with various chain lengths (n = 5,12) was synthesized. It was assumed that a pair of two triblock copolymers with enantiomeric oligolactide chains, when blended in an equimolar mixture, would form more stable, self-assembled, and stereocomplexed (ST) hydrogels. A series of blend hydrogels encapsulating human growth hormone (hGH) was prepared by varying blend ratios between PL and stereocomplexed PL copolymers. They showed sustained release of hGH via an erosion-dependent mechanism. The hydrogel with a 5% blending ratio exhibited the most delayed mass erosion as well as sustained protein release patterns in vitro possibly due to the formation of a fish-net like 3-D mesh structure. The effect of incubation condition on hGH release and degradation behaviors was also assessed.  相似文献   

7.
Polylactide (PLA) is a biodegradable, aliphatic polyester derived from lactic acid. It has similar mechanical properties to polyethylene terephthalate, but has a significantly lower maximum continuous use temperature. PLA products can be recycled after use either by remelting and processing the material a second time or by hydrolyzing to lactic acid, the basic chemical. In this review, the technologies for polymerization of the lactic acid and the comparison of physical, thermal and mechanical properties, biodegradability, and biocompatibility of the PLA and copolymers with other similar polymers are described.  相似文献   

8.
Slager J  Domb AJ 《Biomacromolecules》2003,4(5):1316-1320
Reversible stereoselective complexes were spontaneously obtained from mixing acetonitrile solutions of enatiomeric d-poly(lactic acid) (d-PLA), l-poly(lactic acid) (l-PLA), and leuprolide, a l-configured nonapeptide LHRH analogue. The complex spontaneously aggregated and precipitated in high yields (>90%) from acetonitrile solution, forming uniform, porous microparticles. The stereocomplex microparticles showed a continuous release of the interlocked peptide for a period of one to three months under physiological conditions. Various factors, including method of complex formation, molecular weight of PLA, leuprolide:polymer and d-PLA:l-PLA complex ratios, and additives, influenced the release pattern of leuprolide from the stereocomplexes. Continuous release of leuprolide for over 100 days was observed for certain stereocomplex compositions. In vivo evaluation of the leuprolide loaded stereocomplexes in rats by monitoring testosterone levels in the blood of rats after subcutaneous injection showed low testosterone levels for over 42 days.  相似文献   

9.
The objective of this study was to synthesize anhydride prodrugs for carboxylic-acid-bearing agents such as non-steroidal anti-inflammatory drugs, shield the carboxylic acid group from irritative effects, and obtain sustained release patterns. Ibuprofen was used as a representative drug for anhydride derivatization. Conjugates of ibuprofen with carboxylic acid moieties of different acrylic polymers were prepared by dehydration reaction using acetic anhydride. Products were characterized by infrared spectroscopy, nuclear magnetic resonance, and scanning electron microscopy followed by preparation of microspheres with different sizes from the conjugate Eudragit® L-100-ibuprofen. The drug release was monitored by high-performance liquid chromatography. Ibuprofen was bound to the polymers via an anhydride bond in high reaction yields (75–95%) with drug loading of up to 30% (w/w). These anhydride derivatives hydrolyzed and release the drug at different periods ranging from 1 to 5 days, depending on the hydrophobicity and the cross-linking of the conjugates. The release of drug from the microspheres was correlated to their size and ranged from 2 to almost 8 days. This study demonstrates the promise of anhydride prodrug for extending drug action while shielding the carboxylic acid group.  相似文献   

10.
The aim of this work has been the preparation and characterization of novel hydrogels with polysaccharide-poly(amino acid) structure having suitable physicochemical properties for pharmaceutical applications. In the first step, hyaluronic acid (HA) and alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) have been derivatized with methacrylic anhydride (AMA), thus obtaining HA-AMA and PHM derivatives, respectively. In the second step, aqueous solutions of both these derivatives have been irradiated at 313 nm to obtain chemical hydrogels. The hydrogel obtained by irradiating for 15 min an aqueous solution containing 4% w/v of HA-AMA and 4% w/v of PHM resulted in the highest yield. Its swelling ability was dependent on the pH and nature of the external medium. Besides, this hydrogel undergoes a partial hydrolysis, especially in the presence of enzymes, such as esterase or hyaluronidase, but the entity of this degradation is lower than that observed for a hydrogel based on HA-AMA alone. The ability of this hydrogel to entrap drug molecules has been evaluated by using thrombin as a model drug. In vitro release studies and a platelet aggregation test demonstrated that the HA-AMA/PHM hydrogel is able to release thrombin in the active form, thus suggesting its suitability for the treatment of hemorrhages.  相似文献   

11.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

12.
Synthesis and cytotoxicity of salicylate-based poly(anhydride esters)   总被引:1,自引:0,他引:1  
This paper describes the synthesis and cytotoxicity of poly(anhydride esters) that are composed of several salicylate derivatives, including halogenated salicylates, aminosalicylates, salicylsalicylic acid, and thiolsalicylic acid. The incorporation of these nonsteroidal antiinflammatory drugs (NSAIDs) into a biodegradable polymer backbone yields drug-based polymers that have potential for a variety of applications. The poly(anhydride esters) were synthesized by melt condensation polymerization. The halogenated salicylate derivatives yielded the highest molecular polymers as well as the highest glass transition temperatures. All polymers displayed in vitro degradation lag times from 1 to 3 days, depending on the water solubility of the salicylate derivative. Cell viability and proliferation were determined with L929 fibroblast cells in serum-containing medium to assess the polymer cytotoxicities, which varied as a function of the saliyclate chemistry. Cell morphology was normal for most of the polymers evaluated.  相似文献   

13.
Poly-lactic acid synthesis for application in biomedical devices - a review   总被引:2,自引:0,他引:2  
Bioabsorbable polymers are considered a suitable alternative to the improvement and development of numerous applications in medicine. Poly-lactic acid (PLA,) is one of the most promising biopolymers due to the fact that the monomers may produced from non toxic renewable feedstock as well as is naturally occurring organic acid. Lactic acid can be made by fermentation of sugars obtained from renewable resources as such sugarcane. Therefore, PLA is an eco-friendly product with better features for use in the human body (nontoxicity). Lactic acid polymers can be synthesized by different processes so as to obtain products with an ample variety of chemical and mechanical properties. Due to their excellent biocompatibility and mechanical properties, PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues. In order to maximize the benefits of its use, it is necessary to understand the relationship between PLA material properties, the manufacturing process and the final product with desired characteristics. In this paper, the lactic acid production by fermentation and the polymer synthesis such biomaterial are reviewed. The paper intends to contribute to the critical knowledge and development of suitable use of PLA for biomedical applications.  相似文献   

14.
The purpose of this study is to formulate in situ implants containing doxycycline hydrochloride and/or secnidazole that could be used in the treatment of periodontitis by direct periodontal intrapocket administration. Biodegradable polymers [poly (lactide) (PLA) and poly (lactide-co-glycolide) (PLGA)], each polymer in two concentrations 25%w/w, 35%w/w were used to formulate the in situ implants. The rheological behavior, in vitro drug release and the antimicrobial activity of the prepared implants were evaluated. Increasing the concentration of each polymer increases the viscosity and decreases the percent of the drugs released after 24 h. PLA implants showed a slower drugs release rate than PLGA implants in which the implants composed of 25% PLGA showed the fastest drugs release. The in vitro drug release and antimicrobial activity results were compared with results of Atridox. Results revealed that the pharmaceutical formulation based on 25% PLGA containing secnidazole and doxycycline hydrochloride has promising activity in treating periodontitis in comparison with Atridox.  相似文献   

15.
New resorbable and elastomeric ABA tri- and multiblock copolymers have been successfully synthesized by combining ring-opening polymerization with ring-opening polycondensation. Five different poly(L-lactide-b-1,5-dioxepan-2-one-b-L-lactide) triblock copolymers and one new poly(L-lactide-b-1,5-dioxepan-2-one) multiblock copolymer have been synthesized. The triblock copolymers were obtained by ring-opening polymerization of 1,5-dioxepan-2-one (DXO) and L-lactide (LLA) with a cyclic tin initiator. The new multiblock copolymer was prepared by ring-opening polycondensation of a low molecular weight triblock copolymer with succinyl chloride. The molecular weight and the composition of the final copolymers were easily controlled by adjusting the monomer feed ratio, and all of the polymers obtained had a narrow molecular weight distribution. It was possible to tailor the hydrophilicity of the materials by changing the DXO content. Copolymers with a high DXO content had a more hydrophilic surface than those with a low DXO content. The receding contact angle varied from 27 to 44 degrees. The tensile properties of the copolymers were controlled by altering the PDXO block length. The tensile testing showed that all the polymers were very elastic and had very high elongations-at-break (epsilon(b)). The copolymers retained very good mechanical properties (epsilon(b) approximately 600-800% and sigma(b) approximately 8-20 MPa) throughout the in vitro degradation study (59 days).  相似文献   

16.
Liu SQ  Yang YY  Liu XM  Tong YW 《Biomacromolecules》2003,4(6):1784-1793
Temperature-sensitive diblock copolymers, poly(N-isopropylacrylamide)-b-poly(D,L-lactide) (PNIPAAm-b-PLA) with different PNIPAAm contents were synthesized and utilized to fabricate microspheres containing bovine serum albumin (BSA, as a model protein) by a water-in-oil-in-water double emulsion solvent evaporation process. XPS analysis showed that PNIPAAm was a dominant component of the microspheres surface. BSA was well entrapped within the microspheres, and more than 90% encapsulation efficiency was achieved. The in vitro degradation behavior of microspheres was investigated using SEM, NMR, FTIR, and GPC. It was found that the microspheres were erodible, and polymer degradation occurred in the PLA block. Degradation of PLA was completed after 5 months incubation in PBS (pH 7.4) at 37 degrees C. A PVA concentration of 0.2% (w/v) in the internal aqueous phase yielded the microspheres with an interconnected porous structure, resulting in fast matrix erosion and sustained BSA release. However, 0.05% PVA produced the microspheres with a multivesicular internal structure wrapped with a dense skin layer, resulting in lower erosion rate and a biphasic release pattern of BSA that was characterized with an initial burst followed by a nonrelease phase. The microspheres made from PNIPAAm-b-PLA with a higher portion of PNIPAAm provided faster BSA release. In addition, BSA release from the microspheres responded to the external temperature changes. BSA release was slower at 37 degrees C (above the LCST) than at a temperature below the LCST. The microspheres fabricated with PNIPAAm-b-PLA having a 1:5 molar ratio of PNIPAAm to PLA and 0.2% (w/v) PVA in the internal aqueous phase provided a sustained release of BSA over 3 weeks in PBS (pH 7.4) at 37 degrees C.  相似文献   

17.
The purpose of this study is to develop novel colon-specific drug delivery systems with pH-sensitive swelling and drug release properties. Methacrylic-type polymeric prodrugs with different content levels of 5-amino salicylic acid (5-ASA) were synthesized by free radical copolymerization of metacrylic acid (MAA), polyethylene glycol monomethacrylate (PEGMA), and a methacrylic derivative of 5-ASA (methacryloyloxyethyl 5-amino salicylate [MOES]). The copolymers were characterized, and the drug content of the copolymers was determined. The effect of copolymer composition on the swelling behavior and hydrolytic degradation was studied in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.2). The swelling and hydrolytic behavior of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in SGF or an increase in gel swelling in SIF. Drug release studies showed that increasing content of MAA in the copolymer enhances the hydrolysis in SIF but has no effect in SGF. The results suggest that hydrogen-bonded complexes are formed between MAA and PEG pendant groups and that these pH-sensitive systems could be useful for preparation of a controlled-release formulation of 5-ASA.  相似文献   

18.
The purpose of this research was to study the chemical reactivity of a somatostatin analogue octreotide acetate, formulated in microspheres with polymers of varying molecular weight and co-monomer ratio under in vitro testing conditions. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) microspheres were prepared by a solvent extraction/evaporation method. The microspheres were characterized for drug load, impurity content, and particle size. Further, the microspheres were subjected to in vitro release testing in acetate buffer (pH 4.0) and phosphate buffered saline (PBS) (pH 7.2). In acetate buffer, 3 microsphere batches composed of low molecular weight PLGA 50∶50, PLGA 85∶15, and PLA polymers (≤10 kDa) showed 100% release with minimal impurity formation (<10%). The high molecular weight PLGA 50∶50 microspheres (28 kDa) displayed only 70% cumulative release in acetate buffer with significant impurity formation (∼24%). In PBS (pH 7.4), on the other hand, only 50% release was observed with the same low molecular weight batches (PLGA 50∶50, PLGA 85∶15, and PLA) with higher percentages of hydrophobic impurity formation (ie, 40%, 26%, and 10%, respectively). In addition, in PBS, the high molecular weight PLGA 50∶50 microspheres showed only 20% drug release with ∼60% mean impurity content. The chemically modified peptide impurities inside microspheres were structurally confirmed through Fourier transform-mass spectrometry (FT-MS) and liquid chromatography/mass spectrometry (LC-MS/MS) analyses after extraction procedures. The adduct compounds were identified as covalently modified conjugates of octreotide with lactic and glycolic acid monomers within polymeric microspheres. The data suggest that due to steric hindrance factors, polymers with greater lactide content were less amenable to the formation of adduct impurities compared with PLGA 50∶50 copolymers.  相似文献   

19.
Polylactic acid (PLA) is one of the promising biodegradable polymers, which has been produced in a rather complicated two-step process by first producing lactic acid by fermentation followed by ring opening polymerization of lactide, a cyclic dimer of lactic acid. Recently, we reported the production of PLA and its copolymers by direct fermentation of metabolically engineered Escherichia coli equipped with the evolved propionate CoA-transferase and polyhydroxyalkanoate (PHA) synthase using glucose as a carbon source. When employing these initially constructed E. coli strains, however, it was necessary to use an inducer for the expression of the engineered genes and to feed succinate for proper cell growth. Here we report further metabolic engineering of E. coli strain to overcome these problems for more efficient production of PLA and its copolymers. This allowed efficient production of PLA and its copolymers without adding inducer and succinate. The finally constructed recombinant E. coli JLXF5 strain was able to produce P(3HB-co-39.6 mol% LA) having the molecular weight of 141,000 Da to 20 g l−1 with a polymer content of 43 wt% in a chemically defined medium by the pH-stat fed-batch culture.  相似文献   

20.
ABA triblock copolymers [A = 2-(diisopropylamino)ethyl methacrylate), DPA or 2-(diethylamino)ethyl methacrylate), DEA; B = 2-methacryloyloxyethyl phosphorylcholine, MPC] prepared using atom transfer radical polymerization dissolve in acidic solution but form biocompatible free-standing gels at around neutral pH in moderately concentrated aqueous solution (above approximately 10 w/v % copolymer). Proton NMR studies indicate that physical gelation occurs because the deprotonated outer DPA (or DEA) blocks become hydrophobic, which leads to attractive interactions between the chains: addition of acid leads to immediate dissolution of the micellar gel. Release studies using dipyridamole as a model hydrophobic drug indicate that sustained release profiles can be obtained from these gels under physiologically relevant conditions. More concentrated DPA-MPC-DPA gels give slower release profiles, as expected. At lower pH, fast, triggered release can also be achieved, because gel dissolution occurs under these conditions. Furthermore, the nature of the outer block also plays a role; the more hydrophobic DPA-MPC-DPA triblock gels are formed at lower copolymer concentrations and retain the drug longer than the DEA-MPC-DEA triblock gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号