首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous studies, a perceptual switching related potential was obtained during the observation of a multistable dynamic reversal pattern, where the averaging of the single responses was triggered by subjects pressing a button. The present methodological study aims to increase the signal quality of perceptual switching related potentials considering the dependence of the measurement method on the reaction time of the subject, which may vary significantly during a session, leading to low-amplitude waveform in the averaged event-related-potential (ERP). To overcome this problem in measuring the electrophysiological correlate of an internal event, a pattern selection method based on the wavelet transform (WT) is proposed to choose a subset of single ERPs with more homogenous latencies. Nine subjects observed a Necker cube and were instructed to press the button immediately after perceptual switching. A slow, low-amplitude positive wave with frontocentral amplitude maxima was observed around 250 ms prior to the button press. After the application of a 5 octave WT on single sweeps, the time-frequency coefficients obtained in each octave were averaged across trials. The most dominant feature representing the averaged ERP was the delta (0.5–4 Hz) coefficient occurring between 250 and 125 ms before the button press. By averaging the subset of the single sweeps containing this property, a sharpening and significant amplitude increase of the response peak was observed. Received: 12 September 1997 / Accepted in revised form: 9 July 1998  相似文献   

2.
Prolonged presentation of visually ambiguous figures leads to perceptual switching. Individual switching rates show great variability. The present study compares individuals with high versus low switching rates by investigating human scalp electroencephalogram and blink rates. Eight subjects viewed the Necker cube continuously and responded to perceptual switching by pressing a button. Frequent switchers showed characteristic occipital alpha and frontal theta band activity prior to a switch, whereas infrequent switchers did not. The alpha activity was specific to switching, the theta activity was generic to perceptual processing conditions. A negative correlation was observed between perceptual switching and blink rates. These results suggest that the ability to concentrate attentional effort on the task is responsible for the differences in perceptual switching rates  相似文献   

3.
An ambiguous figure such as the Necker cube causes spontaneous perceptual switching (SPS). The mechanism of SPS in multistable perception has not yet been determined. Although early psychological studies suggested that SPS may be caused by fatigue or satiation of orientation, the neural mechanism of SPS is still unknown. Functional magnetic resonance imaging (fMRI) has shown that the dorsal attention network (DAN), which mainly controls voluntary attention, is involved in bistable perception of the Necker cube. To determine whether neural dynamics along the DAN cause SPS, we performed simultaneous electroencephalography (EEG) and fMRI during an SPS task with the Necker cube, with every SPS reported by pressing a button. This EEG–fMRI integrated analysis showed that (a) 3–4 Hz spectral EEG power modulation at fronto-central, parietal, and centro-parietal electrode sites sequentially appeared from 750 to 350 ms prior to the button press; and (b) activations correlating with the EEG modulation traveled along the DAN from the frontal to the parietal regions. These findings suggest that slow oscillation initiates SPS through global dynamics along the attentional system such as the DAN.  相似文献   

4.
Blinks and saccades cause transient interruptions of visual input. To investigate how such effects influence our perceptual state, we analyzed the time courses of blink and saccade rates in relation to perceptual switching in the Necker cube. Both time courses of blink and saccade rates showed peaks at different moments along the switching process. A peak in blinking rate appeared 1,000 ms prior to the switching responses. Blinks occurring around this peak were associated with subsequent switching to the preferred interpretation of the Necker cube. Saccade rates showed a peak 150 ms prior to the switching response. The direction of saccades around this peak was predictive of the perceived orientation of the Necker cube afterwards. Peak blinks were followed and peak saccades were preceded by transient parietal theta band activity indicating the changing of the perceptual interpretation. Precisely-timed blinks, therefore, can initiate perceptual switching, and precisely-timed saccades can facilitate an ongoing change of interpretation.  相似文献   

5.
We studied the relationship between perceptual switching in the Necker cube and long-distance transient phase synchronization in EEG. Transient periods of response related synchrony between parietal and frontal areas were observed. They start 800–600, ms prior to the switch response and occur in pairs. Four types of pairs could be distinguished, two of which are accompanied by transient alpha band activity in the occipital area. The results indicate that perceptual switching processes involve parietal and frontal areas; these are the ones that are normally associated with various cognitive processes. Sensory information in the visual areas is involved in some, but not in all, of switching processes. The intrinsic variability, as well as the participating areas, points to the role of strategic cognitive processes in perceptual switching.  相似文献   

6.
Subjects viewed letters presented at 2 sec intervals and prepared a fast button press whenever an “O” appeared. If the next letter was an “X” the button press was executed (Go signal), but if the letter was a non-X character (T, H, Z) suppression of the response was required (NoGo cue). NoGo signals elicited a P300-like wave that was larger at central and frontal scalp sites contralateral to the prepared movement, compared to P300s elicited by Go cues which were symmetric about the sagittal midline and dominant at parietal sites. Subtraction of preparatory CNVs from the NoGo P300 did not remove differences in scalp topography, or reduce the amplitude of the NoGo P300 to that seen following control letters that required perceptual identification but did not call for suppression of prepared motor responses. Principal components analysis identified a middle positive wave following X-alone control stimuli whose topography resembled the NoGo P300. These findings suggest that the source of augmented NoGo P300s is a generator involved with sensorimotor inhibition. We discuss the mechanism of P300 waves and evidence linking these waves with inhibition in other task arrangements.  相似文献   

7.
We recorded cortical potentials evoked by painful CO2 laser stimulation (pain SEP), employing an oddball paradigm in an effort to demonstrate event-related potentials (ERP) associated with pain. In 12 healthy subjects, frequent (standard) pain stimuli (probability 0.8) were delivered to one side of the dorsum of the left hand while rare (target) pain stimuli (probability 0.2) were delivered to the other side of the same hand. Subjects were instructed to perform either a mental count or button press in response to the target stimuli. Two early components (N2 and P2) of the pain SEP demonstrated a Cz maximal distribution, and showed no difference in latency, amplitude or scalp topography between the oddball conditions or between response tasks. In addition, another positive component (P3) following the P2 was recorded maximally at Pz only in response to the target stimuli with a peak latency of 593 msec for the count task and 560 msec for the button press task. Its scalp topography was the same as that for electric and auditory P3. The longer latency of pain P3 can be explained not only by its slower impulse conduction but also by the effects of task difficulty in the oddball paradigm employing the pain stimulus compared with electric and auditory stimulus paradigms. It is concluded that the P3 for the pain modality is mainly related to a cognitive process and corresponds to the P3 of electric and auditory evoked responses, whereas both N2 and P2 are mainly pain-related components.  相似文献   

8.
Many tasks in our daily life demand not only the use of different fingers of one hand in a serial fashion, but also to alternate from one hand to the other. Here, we investigated performance in a bimanual serial reaction time task (SRTT) with particular emphasis on learning-related changes in reaction time (RT) for consecutive button presses for homologous index- and middle fingers. The bimanual SRTT consisted of sequential button presses either with the left or right index- and middle-finger to a series of visual letters displayed on a computer screen. Each letter was assigned a specific button press with one of four fingers. Two outcome measures were investigated: (a) global sequence learning as defined by the time needed to complete a 15-letter SRTT sequence and (b) changes in hand switch costs across learning. We found that bimanual SRTT resulted in a global decrease in RT during the time course of learning that persisted for at least two weeks. Furthermore, RT to a button press showed an increase when the previous button press was associated with another hand as opposed to the same hand. This increase in RT was defined as switch costs. Hand switch costs significantly decreased during the time course of learning, and remained stable over a time of approximately two weeks. This study provides evidence for modulations of switch costs during bimanual sequence learning, a finding that might have important implications for theories of bimanual coordination and learning.  相似文献   

9.
本文旨在探讨突触功能障碍大鼠模型在额叶、颞叶和海马这些与认知功能有关的脑区EEG频域特征。先用海马CA1区Aβ1-40加微量注射法制备突触功能障碍模型,用Morris水迷宫行为学测试系统检测其学习记忆能力;然后记录上述脑区的EEG并做频谱分析。结果显示:(1)模型组在第3,4、5、6训练时间段的平均逃避潜伏期较正常组明显延长,和第2训练时间段的相比较,正常组第5训练时间段平均逃避潜伏期明显缩短,模型组到第7训练时间段平均逃避潜伏期开始明显缩短(P〈0.05);撤去平台后,模型组在原平台所在象限的时间百分比明显降低(P〈0.05)。(2)模型组的EEG表现为α节律慢化,功率下降,其主峰频率左移2Hz,并且额叶、颞叶和海马的δ波和θ波功率不同程度地增高。由此Aβ1-40微量注射法成功制备了突触功能障碍大鼠模型。该模型大鼠的学习记忆能力降低,其频谱特征表现为α节律慢化,功率下降或消失,慢波(δ波和θ波)活动增多,功率不同程度地增高。这些与阿尔茨海默病(Alzheimer’s disease,AD)的EEG一致,可为以后对突触功能障碍时受累皮层进行深入的可塑性和神经再生的研究提供电生理基础。  相似文献   

10.
Perceptual multistability, alternative perceptions of an unchanging stimulus, gives important clues to neural dynamics. The present study examined 56 perceptual dominance time series for a Necker cube stimulus, for ambiguous motion, and for binocular rivalry. We made histograms of the perceptual dominance times, based on from 307 to 2478 responses per time series (median=612), and compared these histograms to gamma, lognormal and Weibull fitted distributions using the Kolmogorov–Smirnov goodness-of-fit test. In 40 of the 56 tested cases a lognormal distribution provided an acceptable fit to the histogram (in 24 cases it was the only fit). In 16 cases a gamma distribution, and in 11 cases a Weibull distribution, were acceptable but never as the only fit in either case. Any of the three distributions were acceptable in three cases and none provided acceptable fits in 12 cases. Considering only the 16 cases in which a lognormal distribution was rejected (p<0.05) revealed that minor adjustments to the fourth-moment term of the lognormal characteristic function restored good fits. These findings suggest that random fractal theory might provide insight into the underlying mechanisms of multistable perceptions.  相似文献   

11.
In order to assess age effects upon the daytime level of alertness, both subjective and objective measures of alertness were obtained in 19 healthy elderly males (mean age 65 years) and 19 healthy young males (mean age 21 years). Subjects were recorded during a Multiple Sleep Latency Test (MSLT), administered at 5 different times of day (9 a.m., 12 a.m., 3 p.m., 6 p.m., 9 p.m.). Before each test, subjects filled out an alertness questionnaire. During the entire 20 minutes of each test electroencephalographic (EEG) recordings were made and transformed into 40 averaged spectra, one for each 30 s epoch. For the delta, theta, alpha, sigma and beta bands of the EEG 6 consecutive values were averaged to obtain 1 value per 3 minutes. On the basis of the visually guided detection of the first spindle, sleep onset was determined. The elderly subjects obtained a higher overall level of subjective alertness than the young subjects. No age effect was observed for sleep latency, which followed a U-shaped diurnal trend. Overall, the mean relative EEG energy values followed a diurnal trend that was the reverse of that for sleep latency. The mean relative delta EEG energy gradually increased, and the mean relative alpha EEG energy gradually decreased across the MSLT. For the young subjects the respective ranges of variation of these EEG bands were very similar, while for the elderly subjects the range of variation of the alpha values was less than half of that for the delta band. Apparently, alpha EEG activity during the wake-sleep transition does not simply covary with delta EEG activity. Moreover, age appears to have a significant effect upon the dynamics of alpha EEG activity during the wake-sleep transition.  相似文献   

12.
The relationship between the latencies and amplitudes of the N1 and P2 components of the visual evoked potential (VEP) and the psychophysiological state of the brain immediately preceding the time of the stimulus has been investigated in 7 male subjects. Power spectral measures in the delta, theta, alpha and beta bands of the 1 sec pre-stimulus EEG were used to assess the brain state, and low intensity flashes, delivered randomly between 2 and 6 whole seconds, were used as the stimuli. Trials were ranked separately according to the relative amounts of pre-stimulus power in each EEG band and were partitioned into groups by an equal pre-stimulus spectral power criterion. Averaged EPs were computed from these groups and multiple regression analysis was used to relate pre-stimulus spectral power values to EP features. Five of the 7 subjects displayed consistent increases in N1-P2 amplitude as a function of increasing pre-stimulus relative alpha power. The between-subjects effect of pre-stimulus EEG on N1 latency was small, but was moderate for P2 latency (both significant). Both N1 and P2 latency were found to decrease with increasing amounts of pre-stimulus relative delta and theta power.  相似文献   

13.
Interhemispheric switching mediates perceptual rivalry   总被引:3,自引:0,他引:3  
BACKGROUND: Binocular rivalry refers to the alternating perceptual states that occur when the images seen by the two eyes are too different to be fused into a single percept. Logothetis and colleagues have challenged suggestions that this phenomenon occurs early in the visual pathway. They have shown that, in alert monkeys, neurons in the primary visual cortex continue to respond to their preferred stimulus despite the monkey reporting its absence. Moreover, they found that neural activity higher in the visual pathway is highly correlated with the monkey's reported percept. These and other findings suggest that the neural substrate of binocular rivalry must involve high levels, perhaps the same levels involved in reversible figure alternations. RESULTS: We present evidence that activation or disruption of a single hemisphere in human subjects affects the perceptual alternations of binocular rivalry. Unilateral caloric vestibular stimulation changed the ratio of time spent in each competing perceptual state. Transcranial magnetic stimulation applied to one hemisphere disrupted normal perceptual alternations when the stimulation was timed to occur at one phase of the perceptual switch, but not at the other. Furthermore, activation of a single hemisphere by caloric stimulation affected the perceptual alternations of a reversible figure, the Necker cube. CONCLUSIONS: Our findings suggest that interhemispheric switching mediates perceptual rivalry. Thus, competition for awareness in both binocular rivalry and reversible figures occurs between, rather than within, each hemisphere. This interhemispheric switch hypothesis has implications for understanding the neural mechanisms of conscious experience and also has clinical relevance as the rate of both types of perceptual rivalry is slow in bipolar disorder (manic depression).  相似文献   

14.
电针对实验性癫痫发作的影响:脑电的功率谱分析   总被引:4,自引:0,他引:4  
何晓平  沈霖霖 《生理学报》1990,42(2):141-148
以电惊厥和青霉素致痫作为实验性癲痫的动物模型。采用脑电的计算机功率谱分析技术,研究了电针作用于发作过程中脑电各频段功率百分比的变化。在安静的大鼠,脑电以δ和θ频段为主,其功率主峰在δ频段。青霉素致痫和电惊厥使δ频段功率百分比下降,α和β频段功率百分比增加,主功率频段右移,总功率亦大大增强。本实验采用的电针对背景脑电活动没有明显影响。而电针加电惊厥或青霉素致痫,δ频段功率百分比复又增加,α和β频段功率百分比则下降,主功率频段又回到δ频段,总功率也显著减少。压缩功率谱阵图直观地显示了这种变化。结果提示,电针可使大鼠脑电出现同步化趋势,可能是加强了脑的抑制过程,从而抑制了癲痫发作的。  相似文献   

15.
Brain potentials were recorded from 12 normal subjects engaged in an auditory target detection task (target stimulus probability of 0.2, stimulus rate of 1 every 2 sec) when instructions were (1) to press a response button with the thumb of the dominant hand to each target or (2) to keep a mental count of each target. A pre-stimulus slow negative potential was identified before every stimulus except non-targets immediately after targets. The amplitude of the pre-stimulus negativity was significantly affected by task instructions and was up to 4 times larger during the button press than the mental count condition. In contrast, the amplitudes and latencies of the event-related components (N100, P200, N200 and P300), when slow potentials were removed by filtering, were not different as a function of press or count instructions. The immediately preceding stimulus sequence affected both the amplitude and onset latency of the pre-stimulus negativity; both measures increased as the number of preceding non-targets increased. The amplitude of the pre-stimulus negative shift to targets also increased significantly as RT speed decreased. The major portion of the pre-stimulus negative potential is considered a readiness potential (RP) reflecting preparations to make a motor response. The amplitude of the RP during the target detection task did not significantly lateralize in contrast to the RP accompanying self-paced movements.  相似文献   

16.
Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou''s figure (bound percept) or as pairs of bars oscillating independently along cardinal axes (unbound percept). We found that beta (15–25 Hz), but not gamma (55–85 Hz) oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.  相似文献   

17.
This immunocytochemical study of the late postnatal development of the medio-basal hypothalamus revealed the presence of ACTH 1-39 like positivity in neurons of the arcuate nucleus form the begin of this study (day E 18-20) onwards. Alpha MSH positivity, on the contrary, is not present in cells of the same area before day P 16. No other areas in the developing medio-basal hypothalamus contain perikaryal positivity for alpha M-SH or ACTH 1-39. The pituitary contains ACTH 1-39 like positivity from the begin of this study (day E 18-20) onwards. Fibers are positive for alpha MSH during the fetal development of the medio-basal hypothalamus, demonstrating an overal reactivity without varicosities and restricted to bundles or neuropil areas. Towards P 16 the alpha MSH positivity diminishes in the whole medio-basal hypothalamus, remaining present only in large fibre systems like the fornix. ACTH 1-39 like fiber positivity is already distributed in arcuate and periventricular regions at days E 20-PO, reaching its mature extension at day P2. After P16 alpha MSH positive threads, possessing varicosities are restricted to the same areas as ACTH 1-39 like fiber positivity is.  相似文献   

18.
It is known that phasic activation processes reveal themselves by different electrophysiological patterns depending on the sleep depth. Alpha bursts are an electrophysiological manifestation of arousal at the initial stage of sleep, whereas at the II stage K-complex becomes the main arousal pattern. We have shown earlier that during light drowsiness spontaneous recovery of correct psychomotor test performance (after an error) by a sitting subject is accompanied by EEG alpha bursts. The aim of this work was to study the EEG phasic activation pattern at deeper drowsiness during test performance by a subject in a lying position. Subjects had to press sensitive button in a lying position with closed eyes with self-paced oral counting of pressings. The experiment lasted for 40 min; EEG, EOG, and button pressing were recorded. It was shown that recovery of correct performance after errors at deeper drowsiness was accompanied by two types of EEG phasic activation patterns (PAP-1 and PAP-2). The alpha frequency component was always present in both PAP-1 and PAP-2. PAP-1 were observed at early stages of drowsiness and consisted of high-amplitude alpha bursts and EEG activity of higher frequency. PAP-2 were recorded at deeper stages and consisted of K-complexes with superposition of PAP-1. At first (medium level of drowsiness) the alpha bursts were superposed on the late slow K-complex components. With further deepening of drowsiness the early fast components of K-complex were also observed. The early appearance of K-complex during test performance at drowsiness seems to be associated with the urgent run of brain arousal systems, which at spontaneous falling asleep are in operation at the II sleep stage.  相似文献   

19.

Background

It has been discussed that neural phase-synchrony across distant cortical areas (or global phase-synchrony) was correlated with various aspects of consciousness. The generating process of the synchrony, however, remains largely unknown. As a first step, we investigate transient process of global phase-synchrony, focusing on phase-synchronized clusters. We hypothesize that the phase-synchronized clusters are dynamically organized before global synchrony and clustering patterns depend on perceptual conditions.

Methods

In an EEG study, Kitajo reported that phase-synchrony across distant cortical areas was selectively enhanced by top-down attention around 4 Hz in Necker cube perception. Here, we further analyzed the phase-synchronized clusters using hierarchical clustering which sequentially binds up the nearest electrodes based on similarity of phase locking between the cortical signals. First, we classified dominant components of the phase-synchronized clusters over time. We then investigated how the phase-synchronized clusters change with time, focusing on their size and spatial structure.

Results

Phase-locked clusters organized a stable spatial pattern common to the perceptual conditions. In addition, the phase-locked clusters were modulated transiently depending on the perceptual conditions and the time from the perceptual switch. When top-down attention succeeded in switching perception as subjects intended, independent clusters at frontal and occipital areas grew to connect with each other around the time of the perceptual switch. However, the clusters in the occipital and left parietal areas remained divided when top-down attention failed in switching perception. When no primary biases exist, the cluster in the occipital area grew to its maximum at the time of the perceptual switch within the occipital area.

Conclusions

Our study confirmed the existence of stable phase-synchronized clusters. Furthermore, these clusters were transiently connected with each other. The connecting pattern depended on subjects’ internal states. These results suggest that subjects’ attentional states are associated with distinct spatio-temporal patterns of the phase-locked clusters.
  相似文献   

20.
Reverse averaging of cortical potentials from the moment of the motor response followed the verbal task solving (anagram riddle) revealed some brain potentials correlations with the process of a decision making. In the case of task solving the negative frontal wave with the latency 900-400 ms from the motor response was recorded. Intracortical interaction mapping of this potential showed the regular patterns of cortical functional connections in different frequency ranges (alpha, beta). Successful solving of the task was characterized with predominant interaction foci topography in the frontal and left-temporal cortical areas in alpha band and parietal zones in beta. The absence of the task solution was characterized with the parieto-occipital interaction foci in alpha band and their frontal localization in beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号