首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidyl serine induces a concentration-dependent inhibition of polymerization of fibrin monomer and forms a complex with it, which is stable to gel-filtration and chloroform treatment. During plasmin proteolysis phosphatidyl serine remains tightly bound to the fragments of the fibrin monomer molecule formed. A correlation between the amount of amino acids responsible for phospholipid binding and that of phosphatidyl serine bound to the fragment of the fibrin monomer molecule was observed. The introduction of phosphatidyl serine into the blood flow causes a decrease of the thrombin-precipitated fibrinogen and fibrin monomer obtained from animal plasma. At the same time phosphatidyl serine is present in fibrinogen and in high amounts in the fibrin monomer. It is assumed that phosphatidyl serine which controls thrombinogenesis and enzymatic and non-enzymatic steps of fibrin production can thus be regarded as a natural stabilizer of the blood.  相似文献   

2.
Recent studies have revealed that binding of annexin I to phospholipids induces the formation of a second phospholipid binding site. It is shown that the N terminus on the concave side of membrane-bound annexin I is cleaved much faster by trypsin or cathepsin than the N terminus of the free protein. The reactivity of the unique disulfide bond located near the concave face was similarly increased by membrane binding. These results demonstrate that Ca(2+)-dependent membrane binding induces a conformational change on the concave side of the annexin I molecule and support the notion that this face of the molecule may contribute to the formation of the secondary membrane-binding site.  相似文献   

3.
4.
D T Wong  J S Horng 《Life sciences》1973,13(11):1543-1556
Membranes from homogenates of corpus striatum bound 3H-dihydromorphine in a saturable fashion with a Km value of 1 × 10?9M. The binding of 3H-dihydromorphine to the membranes was reduced to about 10% by 10?7M levorphanol but not by 10?7M dextrorphan. The binding of 3H-dihydromorphine became less sensitive to 10?7M levorphanol when the concentration of 3H-dihydromorphine was greater than 2 × 10?9M. Other opiate narcotics, e.g. morphine and l-methadone, were as effective as levorphanol in competition for the binding 3H-dihydromorphine with ED50 values of 2–4 × 10?9M. d-Methadone and dextrorphan were about 1/50 and 1/2000 as effective as their respective levo-isomers. The opiate antagonist, naloxone, also competed effectively for the binding sites with an ED50 value of 3.3 × 10?9M. Substances like acetylcholine, choline, serotonin, norepinephrine and dopamine were ineffective. Only ionophores specific for divalent cations stimulated the binding of 3H-dihydromorphine suggesting that some endogenous divalent cations may be inhibitory to the binding of the opiate narcotic. The receptors of 3H-dihydromorphine probably exist in the membranes of nerve endings and have a density of 6 × 1012 sites per g in corpus striatum. We conclude that the described technique can successfully detect the opiate narcotic receptors in the central nervous system without the usual method of displacement.  相似文献   

5.
Peptides corresponding to the amino terminal region of pardaxin from Pardachirus pavoninus (Gly-Phe-Phe-Ala-Leu-Ile-Pro-Lys-Ile-Ile-Ser-Ser-Pro-Leu-Phe) have been synthesized and their interaction with model membranes of phosphatidyl choline and serine studied by 90 degrees C light scattering and fluorescence spectroscopy. The amino terminal 8-residue peptide and the protected 15-residue peptide cause only aggregation of lipid vesicles. The deprotected 15-residue peptide has the ability to cause aggregation and release of entrapped carboxyfluorescein with both phosphatidyl choline and serine lipid vesicles, like pardaxin. The membrane-perturbing ability of the amino terminal 15-residue peptide can be attributed to its ability to adopt an alpha-helical conformation which is amphiphilic in nature in a hydrophobic environment.  相似文献   

6.
A monoclonal antibody capable of inhibiting opioid binding to rat neural membranes has been produced. Spleen cells from a BALB/c mouse, immunized with a partially purified opioid receptor complex, were fused with P3-X63.Ag8.653.3 myeloma cells. The cell line OR-689.2.4 secreted an IgM that was capable of partially inhibiting opioid binding to rat neural membranes under equilibrium binding conditions, while not affecting the binding of nonopioid ligands. Control mouse immunoglobulins and heat-denatured OR-689.2.4 did not inhibit opioid binding to membranes. The purified immunoglobulin inhibited the binding of [3H]dihydromorphine in a titrable, saturable, and reversible manner, as well as the binding of the delta-ligand [3H][D-Ala2,D-Leu5]enkephalin, the kappa-ligand [3H] ethylketocyclazocine, and 3H-labeled antagonists. In addition to blocking the binding of opioids to membranes, the immunoglobulin could also displace bound [3H]dihydromorphine from neural membranes. The 125I-labeled immunoglobulin specifically bound to neural membranes with a Kd of 1.3 nM and a maximal number of binding sites of 41.8 fmol/0.25 mg of membrane protein. In a titrable manner, the immunoglobulin precipitated opioid binding sites from a solubilized preparation of neural membranes. When OR-689.2.4 conjugated to Sepharose was incubated with the partially purified opioid receptor complex, labeled with 125I, a 35,000-dalton protein was specifically bound by the immunoglobulin. This antibody provides a tool for probing the multiple opioid binding sites.  相似文献   

7.
Creatine ethyl ester was incubated at 37 °C in both water and phosphate-buffered saline and the diagnostic methylene resonances in the 1H NMR spectrum were used to identify the resultant products. It was found that mild aqueous conditions result in the cyclization of creatine ethyl ester to provide inactive creatinine as the exclusive product, and this transformation becomes nearly instantaneous as the pH approaches 7.4. This study demonstrates that mild non-enzymatic conditions are sufficient for the cyclization of creatine ethyl ester into creatinine, and together with previous results obtained under enzymatic conditions suggests that there are no physiological conditions that would result in the production of creatine. It is concluded that creatine ethyl ester is a pronutrient for creatinine rather than creatine under all physiological conditions encountered during transit through the various tissues, thus no ergogenic effect is to be expected from supplementation.  相似文献   

8.
Monoclonal antibodies to enkephalins were established by immunization of mice with met-enkephalin, leu-enkephalin or both. Twenty-three clones with a high titer were classified into 6 types according to the binding properties to enkephalins and their derivatives. Antibody LM 239 showed binding characteristics similar to opiate receptor. It has a very high affinity to enkephalins and their derivatives which have a potent opioid activity, but a low affinity to enkephalin derivatives which devoid of opioid activity. The binding of 3H-met-enkephalin to the antibody was inhibited by naloxone and morphine, although the ID50 values were considerably higher than the Ka values of the alkaloids to opiate receptor.  相似文献   

9.
Histamine release from Sprague-Dawley rat mast cells by dextran was completely inhibited by the absence of exogenous Ca2+ (in contrast to release from the same cells by antigen). Also, spontaneous leakage of histamine from the cells increased in the absence of Ca2+, and cell responsiveness was not completely restored by readding Ca2+. We found no effective substitute for Ca2+ in the release reaction. Ca2+ was not maximally effective immediately when added back to Ca-deficient cells, but almost the full effect of diluting Ca2+ in the medium (which decreased release) and of adding PS (which increased release) were very rapidly established, suggesting that both Ca2+ and PS might act (in part) at superficial cell sites. Release from activated cells could be stopped short by adding glucose or by diluting the cell-dextran mixture with normal buffer, as well as by adding EDTA, which deserves further study.  相似文献   

10.
A study has been made of the role of phosphatidylserine in stereospecific opiate binding to neural membranes, utilizing specific lipolytic enzymes to attack the lipid. At very low concentrations phospholipase A2 from bee venom will preferentially hydrolyze C22:6-fatty acid; and even after a few percent of the total phosphatidylserine is hydrolyzed, opiate binding is greatly inhibited. The addition of brain phosphatidylserine will restore opiate binding; however, when the inhibition approaches 50% restoration is only partial. Exposure of membranes to phosphatidylserine decarboxylase will partially inhibit opiate binding; and the binding returns to the control level after the addition of phosphatidylserine. The partial inhibition of opiate binding by low concentrations of Triton X-100, which presumably remove lipids, can be partially reversed by phosphatidylserine. The binding of 3H-naloxone, an opiate antagonist, is similar to agonists in its behavior towards phospholipases and phosphatidylserine; however, binding of naltrexone, also an antagonist, is far less responsive. It is concluded that the phosphatidylserine associated with the opiate receptor is the C18:0, 22:6-diacyl form, which is closely associated with protein.  相似文献   

11.
Human mannose-binding lectin (MBL) is a serum protein of the innate immune system that circulates as a complex with a group of so-called MBL-associated serine proteases (MASP-1, MASP-2, and MASP-3). Complexes of MBL-MASP2 are able to activate the complement system in an Ab and C1-independent fashion after binding of the lectin to appropriate microbial sugar arrays. We have evaluated the additive effect of the lectin pathway relative to other complement activation pathways and the subsequent effect on neutrophil phagocytosis. Complement activation in the sera of MBL-deficient individuals was studied with and without the addition of exogenous MBL-MASP. Flow cytometry was used to measure the deposition of C4, factor B, C3b, and iC3b on Staphylococcus aureus. Deposition of the first cleavage product of the lectin pathway, C4b, was increased using the sera of three different MBL-deficient individuals when exogenous MBL-MASP was added. Factor B was deposited in association with C4, but there was no evidence of independent alternative pathway activation. Similar enhancement of C3b deposition was also observed, with evidence of elevated amounts of C3b processed to iC3b. The increase in opsonic C3 fragments mediated by MBL was associated with a significant increase in the uptake of organisms by neutrophils. We also observed significant increases in phagocytosis with MBL-MASPs that were independent of complement activation. We conclude that MBL-MASP makes a major contribution to complement-mediated host defense mechanisms.  相似文献   

12.
Fluorescence correlation spectroscopy (FCS) was applied to examine the interactions between a protein and a membrane lipid. The protein 4.1-phosphatidyl serine (PS) interactions served as the model system to demonstrate the membrane lipid-protein interactions. This protein was labeled with rhodamine and its interactions with PS-liposomes were measured by FCS. The present results clearly demonstrated that a small protein molecule, protein 4.1, interacts specifically with a large particle, a PS-liposome. This interaction appears to be hydrophobic and not electrostatic, since the bound protein 4.1 did not dissociate in solution and was specifically released from PS-liposomes by treatment with phospholipase A(2) (PLA(2)). In the present study, using FCS we could demonstrate that the serine residue of PS is required for protein 4.1 to bind to PS-liposomes and that the bound protein 4.1 is closely associated with the fatty acid of the PS molecule in the liposomes.  相似文献   

13.
We have compared the effect of ethanol, a membrane perturbant, on the muscarinic binding sites in neural membranes from a vertebrate (rat) and an insect (locust). The binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) to both rat and locust neural membranes was inhibited by ethanol at 10–500 mM concentrations; but this inhibition was greater in the locust. Ethanol (500 mM) increased the apparent dissociation constant (K d) of [3H]QNB binding to rat membranes from 0.13±0.01 nM in control to 0.20±0.02 nM; there was also an small but significant reduction in the number of binding sitesB max. In locust, 500 mM ethanol reduced theB max of [3H]QNB binding from 590±30 in control to 320±40 pmol/g protein; no significant alteration in theK D was detected. The dissociation rate constant (k off) of [3H]QNB increased from 0.020±0.003 in controls to 0.031±0.004 (min–1) in the presence of 500mM ethanol, the association rate constant (k on) did not change significantly. In locust, 500 mM ethanol did not affect eitherk on ork off. Competition experiments revealed that the binding affinities of both the agonist carbamylcholine and the antagonist atropine to the rat membranes were reduced in the presence of ethanol. In contrast, ethanol caused no alteration in the binding affinities of these ligands to the locust membranes. This differential effect of ethanol on rat and locust muscarinic binding suggests a difference in the hydrophobic domains and/or the membrane interactions of the muscarinic receptors in the two species.  相似文献   

14.
3H-Naloxone was used to demonstrate the presence of specific opiate binding sites in uterine membrane preparations of rats. 3H-Naloxone binding (0.41-27 nM) was found to be rapid, saturable and reversible showing two populations of binding sites with the characteristic of high (KD 2.2 nM; Bmax 46.6 fmol/mg prot.) and low (KD 18.1 nM; Bmax 143.7 fmol/mg prot.) affinity. The number and affinity of the binding sites labelled by 3H-naloxone in the uterus were measured in the rat at mid (14 days), late (21 days) pregnancy and at parturition. The high and low affinity recognition sites labelled by 3H-naloxone showed a consistent reduction during pregnancy and at parturition without changes in the affinity constant. We concluded that pregnancy and parturition are associated with significant changes in the number of the opiate receptors bound in the uterus by 3H-naloxone. This phenomenon which seems to be linked with the several pregnancy-related changes in the levels of endogenous peptides and hormones could be relevant to further explain the pregnancy related changes in pain perception and maternal behavior.  相似文献   

15.
The equilibrium and kinetics of ethyl isocyanide binding to ferroperoxidase were studied. At pH9.1 the results of both studies are consistent with a single-process model with an affinity constant of 95m(-1) and combination and dissociation constants of 2.2x10(3)m(-1).s(-1) and 23s(-1) respectively. Ethyl isocyanide is not bound significantly at pH values lower than 6.0, and in this behaviour and the pH-dependence of the affinity constant, similarities exist between isocyanide and cyanide binding. The enthalpy of the process measured by equilibrium methods is -59kJ/mol (-14kcal/mol). At pH values below 9, the ethyl isocyanide adduct changes in a slow time-dependent manner, giving rise to a new species. These changes are reversible on increasing the pH. The results are discussed in relation to other known information about ligand binding to ferroperoxidase and to myoglobin.  相似文献   

16.
We have expanded on the suitability ofp-aminobenzoic acid ethyl ester as an ultraviolet-absorbing reagent [Wanget al., (1984) Anal Biochem 141:366–81] for the analysis of asparagine-linked oligosaccharides derived from glycoproteins. The oligosaccharides released from glycoproteins by hydrazinolysis/N-reacetylation were derivatized withp-aminobenzoic acid ethyl ester and the derivatives were purified and separated into neutral and acidic oligosaccharides on a PRE-SEP C18 cartridge. The acidic oligosaccharides could be further separated into a few species by high-voltage paper electrophoresis. p-Aminobenzoic acid ethyl ester derivatives of neutral oligosaccharides were analyzed by gel permeation chromatography on Bio-Gel P-4 and HPLC on a silica-based amide column. The elution profile and the proportion of the oligosaccharides were in agreement with literature values. The overall yield of oligosaccharides from glycoproteins was approximately 70%. Fifty pmol of oligosaccharide were detectable on Bio-Gel P-4 and 4–5 pmol on HPLC.Abbreviations HPLC high performance liquid chromatography - NABEE p-aminobenzoic acid ethyl ester - FAB-MS fast-atom bombardment mass spectrometry - (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, (GlcNAc)5 and (GlcNAc)6 chito-oligosaccharides containing 2,3,4,5 and 6 residues ofN-acetylglucosamine  相似文献   

17.
A study was undertaken on the possible involvement of phospholipids on stereospecific opiate binding to a rat brain membrane fraction comprised mainly of synaptic membranes. The addition of acidic phospholipids such as phosphatidylserine, phosphoinositides, and phosphatidic acid significantly enhanced opiate binding. With the exception of phosphatidylserine, when the acidic phospholipids contained a polyunsaturated acyl group, they were actually inhibitory, along with neutral phospholipids derived from brain. Both the C18:0, C18:1 form (derived from myelin) and the C18:0, C22:6 form of phosphatidylserine (derived from synaptic membranes) produced as much as a 45% enhancement in opiate binding. Unsaturated fatty acids were highly inhibitory, the degree of inhibition being related to the degree of unsaturation. Bot phospholipase A and C were inhibitory; and the inhibitory effect of A could not be prevented by albumin or overcome with the addition of phosphatidylserine. With the use of the cross-linking agent, dinitrodifluorobenzene, it could be demonstrated that the phosphatidylserine of synaptic membranes appeared to be preferentially associated with membrane protein. The enhancement of opiate binding by phosphatidylserine diminished with increasing degree of cross-linking.  相似文献   

18.
We and others have suggested previously that the binding of somatostatin to its receptors in the pancreas is regulated by not only somatostatin analogs but also cholecystokinin analogs in proportion to their known biological potencies. To clarify the precise mechanism by which unrelated peptides modulate somatostatin binding, the effect of a phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), or a synthetic diacylglycerol analog, 1-oleyl-2-acetylglycerol (OAG), on [125I-Tyr1]somatostatin binding to pancreatic acinar cell membranes was examined. Pretreatment of pancreatic acini for 120 min at 37 degrees C with 100 ng/ml TPA maximally reduced subsequent labeled somatostatin binding to acinar membranes. The inhibitory effect of TPA on the somatostatin binding was dependent on the dose used or the time and temperature of pretreatment. These effects of TPA were almost mimicked by the treatment of acini with OAG. Scatchard analysis of [125I-Tyr1]somatostatin binding demonstrated that the decrease in the labeled somatostatin binding induced by TPA or OAG pretreatment was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. A specifically labeled single band of Mr = 90,000 obtained with a photoaffinity cross-linking study indicates that the somatostatin-binding sites are the same somatostatin receptor as previously described. Moreover, the intensity of the Mr = 90,000 band was dramatically decreased when acini were treated with increasing concentrations of TPA, a finding consistent with TPA-induced decrease in binding capacity. Such an inhibitory effect of TPA was abolished when pretreatment of acini with TPA was performed in the presence of Ca2+-chelating compounds such as EDTA and EGTA or phospholipid-interacting drugs such as chlorpromazine and tetracaine. Interestingly, the combined treatment of TPA and Ca2+ ionophore A23187 caused synergistic inhibition of the subsequent labeled somatostatin binding to acinar membranes, although Ca2+ ionophore itself almost failed to affect the somatostatin binding. These results suggest, therefore, that TPA or OAG can modulate somatostatin binding to its receptors on rat pancreatic acinar cell membranes, presumably through activation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C); and the activated protein kinase C and intracellular Ca2+ mobilization presumably act to modulate the pancreatic acinar somatostatin receptors synergistically.  相似文献   

19.
The heterogeneity of rat brain opiate receptors was examined by analyzing competition data. The binding of three prototypical tritiated opioid agonists, [3H]-dihydromorphine ([3H]-DHM), [3H]-D-ala2-D-leu5-enkephalin ([3H]-DADLE), and [3H]-ethylketocyclazocine ([3H]-EKC) was determined in the presence of varying concentrations of each of these unlabeled ligands, generating nine displacement curves. A computer program was then used to find the best fit of a model system to these data, assuming two, three or four independent binding sites. The best fit was a four-site model. One of these sites is specific for DHM; two are relatively selective for DHM and DADLE respectively, but also bind EKC. The remaining site binds only EKC with high affinity. These results, together with displacement data using naloxone, FK33824, and D-ala2-met5-enkephalinamide, are discussed in terms of current opiate receptor models.  相似文献   

20.
Alcohol metabolism in the human brain has been characterized as essentially nonoxidative in nature, with the esterification of ethanol with fatty acids via fatty acid ethyl ester synthase. This pathway of ethanol metabolism is related to end organ damage in the brain but the neural cell type expressing FAEES has not been identified. In this study human and rodent neuroblastoma and glioma cell lines are assayed for fatty acid ethyl ester synthase activity. Cells with neuronal properties demonstrated higher activity than glioma cell lines. We confirmed the presence of the mRNA for one type of synthase, fatty acid ethyl ester synthase-III in three neuronal cell lines--N1E115 cells, PC12 cells, and SK-N-MC cells. These results support the hypothesis that FAEES activity is expressed chiefly in cells with neuronal properties and suggest that non-oxidative ethanol metabolism is potentially related to the toxic effect of ethanol on the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号