首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody (Ab) nucleophilic reactivity was studied using hapten and polypeptide antigens containing biotinylated phosphonate diester groups (covalently reactive antigen analogs, CRAs). Polyclonal IgG from healthy donors formed covalent adducts with a positively charged hapten CRA at levels superior to trypsin. Each of the 16 single chain Fv clones studied expressed a similar reactivity, indicating the V domain location of the nucleophiles and their broad distribution in diverse Abs. The formation of hapten CRA-Fv adducts was correlated with Fv proteolytic activity determined by cleavage of a model peptide substrate. Despite excellent nucleophilicity, proteolysis by IgG proceeded at lower rates than trypsin, suggesting that events occurring after nucleophilic attack on the substrate limit the rate of Ab proteolysis. The extracellular domain of the epidermal growth factor receptor with phosphonate diester groups at Lys side chains and a synthetic peptide corresponding to residues 421- 431 of human immunodeficiency virus glycoprotein (gp) 120 with the phosphonate diester at the C terminus formed covalent adducts with specific polyclonal and monoclonal Abs raised by immunization with epidermal growth factor receptor and synthetic gp120-(421- 436) devoid of phosphonate diester groups, respectively. Adduct formation was inhibited by extracellular domain of the epidermal growth factor receptor (exEGFB) and synthetic gp120-(421- 436) devoid of phosphonate groups, suggesting that the nucleophiles are located within the antigen binding sites. These results suggest the innate character of the Ab nucleophilic reactivity, its functional coordination with non-covalent adaptive binding interactions developing over the course of B cell maturation, and novel routes toward permanent inhibition of Abs.  相似文献   

2.
We report the selective catalytic cleavage of the HIV coat protein gp120, a B cell superantigen, by IgM antibodies (Abs) from uninfected humans and mice that had not been previously exposed to gp120. The rate of IgM-catalyzed gp120 cleavage was greater than of other polypeptide substrates, including the bacterial superantigen protein A. The kinetic parameters of gp120 cleavage varied over a broad range depending on the source of the IgMs, and turnover numbers as great as 2.1/min were observed, suggesting that different Abs possess distinct gp120 recognition properties. IgG Abs failed to cleave gp120 detectably. The Fab fragment of a monoclonal IgM cleaved gp120, suggesting that the catalytic activity belongs to the antibody combining site. The electrophoretic profile of gp120 incubated with a monoclonal human IgM suggested hydrolysis at several sites. One of the cleavage sites was identified as the Lys(432)-Ala(433) peptide bond, located within the region thought to be the Ab-recognizable superantigenic determinant. A covalently reactive peptide analog (CRA) corresponding to gp120 residues 421-431 with a C-terminal amidino phosphonate diester mimetic of the Lys(432)-Ala(433) bond was employed to probe IgM nucleophilic reactivity. The peptidyl CRA inhibited the IgM-catalyzed cleavage of gp120 and formed covalent IgM adducts at levels exceeding a control hapten CRA devoid of the peptide sequence. These observations suggest that IgMs can selectively cleave gp120 by a nucleophilic mechanism and raise the possibility of their role as defense enzymes.  相似文献   

3.
Rare monoclonal antibodies (Abs) can form irreversible complexes with antigens by enzyme-like covalent nucleophile-electrophile pairing. To determine the feasibility of applying irreversible antigen inactivation by Abs as the basis of vaccination against microbes, we studied the polyclonal nucleophilic Ab response induced by the electrophilic analog of a synthetic peptide corresponding to the principal neutralizing determinant (PND) of human immunodeficiency virus type-1 (HIV) gp120 located in the V3 domain. Abs from mice immunized with the PND analog containing electrophilic phosphonates (E-PND) neutralized a homologous HIV strain (MN) approximately 50-fold more potently than control Abs from mice immunized with PND. The IgG fractions displayed binding to intact HIV particles. HIV complexes formed by anti-E-PND IgG dissociated noticeably more slowly than the complexes formed by anti-PND IgG. The slower dissociation kinetics are predicted to maintain long-lasting blockade of host cell receptor recognition by gp120. Pretreatment of the anti-PND IgG with a haptenic electrophilic phosphonate compound resulted in more rapid dissociation of the HIV-IgG complexes, consistent with the hypothesis that enhanced Ab nucleophilic reactivity induced by electrophilic immunization imparts irreversible character to the complexes. These results suggest that electrophilic immunization induces a sufficiently robust nucleophilic Ab response to enhance the anti-microbial efficacy of candidate polypeptide vaccines.  相似文献   

4.
We report the selective inactivation of proteolytic antibodies (Abs) to an autoantigen, the neuropeptide vasoactive intestinal peptide (VIP), by a covalently reactive analog (CRA) of VIP containing an electrophilic phosphonate diester at the Lys(20) residue. The VIP-CRA was bound irreversibly by a monoclonal Ab that catalyzes the hydrolysis of VIP. The reaction with the VIP-CRA proceeded more rapidly than with a hapten CRA devoid of the VIP sequence. The covalent binding occurred preferentially at the light chain subunit of the Ab. Covalent VIP-CRA binding was inhibited by VIP devoid of the phosphonate diester group. These results indicate the importance of noncovalent VIP recognition in guiding Ab nucleophilic attack on the phosphonate group. Consistent with the covalent binding data, the VIP-CRA inhibited catalysis by the recombinant light chain of this Ab with potency greater than the hapten-CRA. Catalytic hydrolysis of VIP by a polyclonal VIPase autoantibody preparation that cleaves multiple peptide bonds located between residues 7 and 22 essentially was inhibited completely by the VIP-CRA, suggesting that the electrophilic phosphonate at Lys(20) enjoys sufficient conformational freedom to react covalently with Abs that cleave different peptide bonds in VIP. These results suggest a novel route to antigen-specific covalent targeting of pathogenic Abs.  相似文献   

5.
We report the chemical activity of immunoglobulin micro and kappa/lambda subunits expressed on the surface of B cells and in secreted IgM antibodies (Abs) found in the preimmune repertoire. Most of the nucleophilic reactivity of B cells measured by formation of covalent adducts of a hapten amidino phosphonate diester was attributed to micro and kappa/lambda subunits of the B cell receptor. Secreted IgM Abs displayed superior nucleophilic reactivity than IgG Abs. IgM Abs catalyzed the cleavage of model peptide substrates at rates up to 344-fold greater than IgG Abs. Catalytic activities were observed in polyclonal IgM Abs from immunologically na?ve mice and humans without immunological disease, as well as monoclonal IgM Abs to unrelated antigens. Comparison of several IgM Abs indicated divergent activity levels and substrate preferences, with the common requirement of a basic residue flanking the cleavage site. Fab fragments of a monoclonal IgM Ab expressed catalytic activity, confirming the V domain location of the catalytic site. The catalytic reaction was inhibited by the covalently reactive hapten probe and diisopropylfluorophosphate, suggesting a serine protease-like mechanism. These observations indicate the existence of serine protease-like BCRs and secreted IgM Abs as innate immunity components with potential roles in B cell development and Ab effector functions.  相似文献   

6.
Conventional antibodies react with antigens reversibly. We report the formation of unusually stable complexes of HIV gp120 and nucleophilic antibodies raised by immunization with an electrophilic HIV gp120 analog (E-gp120). The stability of the complexes was evident from their very slow dissociation in a nondenaturing solvent (approximate t(1/2) 18.5 days) and their resistance to dissociation by a denaturant commonly employed to disrupt noncovalent protein-protein binding (sodium dodecyl sulfate). Kinetic studies indicated time-dependent and virtually complete progression of the antibody-gp120 complexes from the initial noncovalent state to a poorly dissociable state. The antibodies to E-gp120 displayed improved covalent reactivity with an electrophilic phosphonate probe compared to control antibodies, suggesting their enhanced nucleophilicity. One of the stably binding antibodies neutralized the infectivity of CCR5-dependent primary HIV strains belonging to clades B and C. These findings suggest the feasibility of raising antibodies capable of long-lasting inactivation of antigens by electrophilic immunization.  相似文献   

7.
An antigenic peptide analogue consisting of HIV gp120 residues 421-431 (an antigen recognition site probe) with diphenyl amino(4-amidinophenyl)methanephosphonate located at the C-terminus (a catalytic site probe) was synthesized and its trypsin and antibody reactivity characteristics were studied. Antibodies to the peptide determinant recognized the peptidyl phosphonate probe. Trypsin was inhibited equipotently by the peptidyl phosphonate and its simple phosphonate counterpart devoid of the peptide determinant. The peptidyl phosphonate inhibited the gp120-hydrolyzing activity of a catalytic antibody light chain. It was bound covalently by the light chain and the binding was inhibited by the classical active-site directed inhibitor of serine proteinase, diisopropyl fluorophosphate. These results reveal that the peptidyl phosphonate ester can serve as a probe for the antigen recognition and catalytic subsites of proteolytic antibodies.  相似文献   

8.
Comparing antigenicity and immunogenicity of engineered gp120   总被引:1,自引:0,他引:1       下载免费PDF全文
We have engineered monomeric gp120 in such a way as to favorably present the conserved epitope for the broadly neutralizing antibody b12 while lowering the exposure of epitopes recognized by some weakly neutralizing and nonneutralizing antibodies. The work presented here describes the immune response in rabbits immunized with two prototype, engineered gp120s to explore the relationship between antigenicity and immunogenicity for these mutants. The GDMR gp120 mutant (residues 473 to 476 on gp120 altered from GDMR to AAAA) has a series of substitutions on the edge of the CD4 binding site (CD4bs), and the mCHO gp120 mutant has seven extra glycans relative to the wild-type protein. Importantly, serum mapping showed that both mutants did not elicit antibodies against a number of epitopes that had been targeted for dampening. The sera from rabbits immunized with the GDMR gp120 mutant neutralized some primary viruses at levels somewhat better than the wild-type gp120 immune sera as a result of an increased elicitation of anti-V3 antibodies. Unlike wild-type gp120 immune sera, GDMR gp120 immune sera failed to neutralize HXBc2, a T-cell line adapted (TCLA) virus. This was associated with loss of CD4bs/CD4-induced antibodies that neutralize TCLA but not primary viruses. The mCHO gp120 immune sera did not neutralize primary viruses to any significant degree, reflecting the masking of epitopes of even weakly neutralizing antibodies without eliciting b12-like antibodies. These results show that antibody responses to multiple epitopes on gp120 can be dampened. More precise focusing to a neutralizing epitope will likely require several iterations comparing antigenicity and immunogenicity of engineered proteins.  相似文献   

9.
Animals immunized with the human immunodeficiency virus type 1 gp160 glycoprotein or certain recombinant envelope components develop potent virus-neutralizing activity. This activity is principally due to antibodies directed toward a hypervariable region of gp120 between cysteine residues 302 and 337 and is virus isolate specific. These antisera, as well as two neutralizing monoclonal antibodies directed against the same hypervariable sequence, do not appreciably block gp120 from binding CD4. In contrast, serum samples from infected humans possess high titers of antibodies that block gp120-CD4 binding; these titers approximately correlate with the serum neutralization titers. Our results suggest that there are at least two targets on the envelope glycoprotein for virus neutralization. The target responsible for the broader neutralizing activity of human serum may be a conserved region of gp120 involved in CD4 binding. The antibodies directed at the hypervariable region of the envelope inhibit a different step in virus infection which is subsequent to receptor binding. The extent to which these two different epitopes of gp120 may be involved in protection against human immunodeficiency virus infection is discussed.  相似文献   

10.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

12.
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.  相似文献   

13.
Single-chain derivatives of JRFL gp120 linked to the first two domains of human CD4 (gp120-CD4D12) or to the CD4 miniprotein analog CD4M9 (gp120-M9), have been constructed. Biacore studies revealed that gp120-CD4D12 and gp120-M9 bound to antibody 17b with dissociation constants of 0.8 and 25 nM, respectively, at pH 7.0, while gp120 alone did not bind. The binding of gp120-CD4D12 to 17b is not affected by the addition of excess soluble CD4D12, while the binding of gp120-M9 is enhanced. This finding indicates that the M9 component of the single chain interacts relatively weakly with gp120 and can be displaced by soluble CD4D12. Immunogenicity studies of gp120, gp120-CD4D12, and gp120-M9 were carried out with guinea pigs. All three molecules were highly immunogenic. The resulting antisera were examined for neutralizing activities against various human immunodeficiency virus type 1 isolates. Broadly neutralizing activity was observed only with sera generated against gp120-CD4D12. These antisera were depleted of anti-CD4D12 antibodies by being passed over a column containing immobilized CD4D12. The depleted sera showed a loss of broadly neutralizing activity. Sera that were affinity purified over a column containing immobilized gp120-M9 also lacked such neutralizing activity. This finding suggests that the broadly neutralizing response observed is exclusively due to anti-CD4 antibodies. Competition experiments showed that only antisera generated against gp120-CD4D12 competed with the CD4i antibody 17b and that this activity was not affected by depletion of anti-CD4 antibodies. The data indicate that although antibodies targeting the CD4i epitope were generated by the gp120-CD4D12 immunogen, these antibodies were nonneutralizing.  相似文献   

14.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   

15.
Human immunodeficiency virus (HIV)-specific CD4 T-cell responses, particularly to the envelope glycoproteins of the virus, are weak or absent in most HIV-infected patients. Although these poor responses can be attributed simply to the destruction of the specific CD4 T cells by the virus, other factors also appear to contribute to the suppression of these virus-specific responses. We previously showed that human monoclonal antibodies (MAbs) specific for the CD4 binding domain of gp120 (gp120(CD4BD)), when complexed with gp120, inhibited the proliferative responses of gp120-specific CD4 T-cells. MAbs to other gp120 epitopes did not exhibit this activity. The present study investigated the inhibitory mechanisms of the anti-gp120(CD4BD) MAbs. The anti-gp120(CD4BD) MAbs complexed with gp120 suppressed gamma interferon production as well as proliferation of gp120-specific CD4 T cells. Notably, the T-cell responses to gp120 were inhibited only when the MAbs were added to antigen-presenting cells (APCs) during antigen pulse; the addition of the MAbs after pulsing caused no inhibition. However, the anti-gp120(CD4BD) MAbs by themselves, or as MAb/gp120 complexes, did not affect the presentation of gp120-derived peptides by the APCs to T cells. These MAb/gp120 complexes also did not inhibit the ability of APCs to process and present unrelated antigens. To test whether the suppressive effect of anti-gp120(CD4BD) antibodies is caused by the antibodies' ability to block gp120-CD4 interaction, APCs were treated during antigen pulse with anti-CD4 MAbs. These treated APCs remained capable of presenting gp120 to the T cells. These results suggest that anti-gp120(CD4BD) Abs inhibit gp120 presentation by altering the uptake and/or processing of gp120 by the APCs but their inhibitory activity is not due to blocking of gp120 attachment to CD4 on the surface of APCs.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

17.
The CD4 binding site (CD4BS) of the HIV-1 envelope glycoprotein (Env) contains epitopes for broadly neutralizing antibody (nAb) and is the target for the vaccine development. However, the CD4BS core including residues 425-430 overlaps the B cell superantigen site and may be related to B cell exhaustion in HIV-1 infection. Furthermore, production of nAb and high-affinity plasma cells needs germinal center reaction and the help of T follicular helper (Tfh) cells. We believe that strengthening the ability of Env CD4BS in inducing Tfh response and decreasing the effects of the superantigen are the strategies for eliciting nAb and development of HIV-1 vaccine. We constructed a gp120 mutant W427S of an HIV-1 primary R5 strain and examined its ability in the elicitation of Ab and the production of Tfh by immunization of BALB/c mice. We found that the trimeric wild-type gp120 can induce more non-specific antibody-secreting plasma cells, higher serum IgG secretion, and more Tfh cells by splenocyte. The modified W427S gp120 elicits higher levels of specific binding antibodies as well as nAbs though it produces less Tfh cells. Furthermore, higher Tfh cell frequency does not correlate to the specific binding Abs or nAbs indicating that the wild-type gp120 induced some non-specific Tfh that did not contribute to the production of specific Abs. This gp120 mutant led to more memory Tfh production, especially, the effector memory Tfh cells. Taken together, W427S gp120 could induce higher level of specific binding and neutralizing Ab production that may be associated with the reduction of non-specific Tfh but strengthening of the memory Tfh.  相似文献   

18.
Phosphonate ester probes for proteolytic antibodies   总被引:2,自引:0,他引:2  
The reactivity of phosphonate ester probes with several available proteolytic antibody (Ab) fragments was characterized. Irreversible, active site-directed inhibition of the peptidase activity was evident. Stable phosphonate diester-Ab adducts were resolved by column chromatography and denaturing electrophoresis. Biotinylated phosphonate esters were applied for chemical capture of phage particles displaying Fv and light chain repertoires. Selected Ab fragments displayed enriched catalytic activity inhibitable by the selection reagent. Somewhat unexpectedly, a phosphonate monoester also formed stable adducts with the Abs. Improved catalytic activity of phage Abs selected by monoester binding was evident. Turnover values (kcat) for a selected Fv construct and a light chain against their preferred model peptide substrates were 0.5 and 0.2 min(-1), respectively, and the corresponding Michaelis-Menten constants (Km) were 10 and 8 microm. The covalent reactivity of Abs with phosphonate esters suggests their ability to recapitulate the catalytic mechanism utilized by classical serine proteases.  相似文献   

19.
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.  相似文献   

20.
Small-angle x-ray scattering data on the unliganded full-length fully glycosylated HIV-1 gp120, the soluble CD4 (domains 1-2) receptor, and their complex in solution are presented. Ab initio structure restorations using these data provides the first look at the envelope shape for the unliganded and the complexed gp120 molecule. Fitting known crystal structures of the unliganded SIV and the complexed HIV gp120 core regions within our resultant shape constraints reveals movement of the V3 loop upon binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号