首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了柑橘果实膨大初期遮光处理对果皮色素、果实含糖量、光合产物在果实内的分配及果实中蔗糖代谢相关酶活力变化的影响.结果表明遮光处理使果皮中的叶绿素含量迅速降低而类胡萝卜素积累缓慢,蔗糖的相对含量则明显上升.遮光处理还促进了光合产物向果皮运输,相应地降低了汁囊中光合产物分配比率,使果实汁囊中蔗糖含量下降.果皮中SS、SPS和转化酶活力在遮光处理后均有较大的提高,而汁囊中则差异不大.上述结果表明,在果实自身光合作用被抑制的条件下,果皮是通过提高酶活力来增强库强度,从而使其在与汁囊竞争中获得更多的光合产物,造成汁囊含糖量下降.  相似文献   

2.
The fermentation of sugar beet juice as well as juice syrup medium by Zymomonas mobilis inoculum attached to stainless steel wire spheres was investigated. A semi‐synthetic sucrose medium enriched with mineral salts and yeast extract was used as the control. It was established that raw sugar beet juice ensured good Zymomonas mobilis culture growth and slightly decreased ethanol synthesis applying both flame‐burned and TiCl4‐treated wire spheres as carriers (Qx = 0.05—0.06 g/l × h; Qeth = 1.02—1.22 g/l × h). High ethanol yield was also observed in juice medium (Y = 0.45‐0.46 g/g), however, levan synthesis with this medium decreased. The application of juice syrup brought about less growth effect and ethanol synthesis as compared to juice medium. The use of semi‐synthetic sucrose medium resulted in high levan production (Qlev = 0.6—0.7 g/l × h), however, reduced ethanol production by 40%. In conclusion, sugar beet juice or syrup is recommendable for the preparation of Zymomonas mobilis inoculum. The levan production stage has to be realized using an optimized semi‐synthetic sucrose medium. The installed wire spheres filled with inocula provided the possibility for a repeated batch fermentation process, which could be recommended for both juice and semi‐synthetic sucrose medium fermentation.  相似文献   

3.
The Transport of Sugars in Developing Fruits of Satsuma Mandarin   总被引:1,自引:0,他引:1  
Transport of sugars to the juice sacs of developing satsumamandarin (Citrus unshui Marc) has been studied in attached fruitsand in isolated fruit pieces. 14CO2 fed to the leaves resultedin [14C]sugar accumulation in the juice sacs, mainly as [14C]sucrose.Uptake of sucrose and glucose by the excised fruit pieces proceededlinearly with time. Sucrose uptake was linearly related to sucroseconcentration over the range 25–300 mM, with no indicationof saturation. This uptake was insensitive to pH (5, 7 or 9),Ca2+(3 mM), PCMBS (2.5 mM), DNP (1 mM) or vanadate (0.1 mM)but was slightly reduced by erythrosin (21 % by 0–1 mM;27 % by 1 mM). No competitive effect of glucose (up to 100 mM)was detectable on sucrose uptake from 100 mM solution. Mostof the [14C]sucrose uptake observed was reversible, althoughconsiderable hydrolysis and metabolic conversion were evidenced.A vanadate-sensitive ATPase was demonstrated by EM localizationon the plasma membrane of the juice sac cells. These resultsare interpreted in relation to the accumulation of assimilatesby the developing fruit. Transport: sugar, satsuma mandarin, juice sacs  相似文献   

4.
果蔗叶片生理生化指标与品质性状的典范相关分析   总被引:1,自引:0,他引:1  
选用果蔗(Saccharum officinarum L.)14个品种,用典范相关分析法研究不同生育期叶片生理生化指标对果蔗品质性状的影响。结果表明:分蘖期类胡萝卜素含量与蔗茎蔗糖含量,可溶性总糖含量与蔗茎含水率,可溶性总糖含量与蔗汁还原糖含量均呈正相关;伸长初期叶绿素含量、CAT活性与蔗茎蔗糖含量,可溶性蛋白质含量与蔗茎纤维含量均呈正相关;伸长盛期Mg^2+ -ATP酶活性与蔗茎纤维含量,可溶性总糖含量与蔗茎蔗糖含量呈正相关,C/N与蔗茎含水率呈负相关;成熟期类胡萝卜素含量与蔗茎蔗糖含量呈正相关,可溶性总糖含量与蔗汁还原糖含量呈负相关。  相似文献   

5.
Sucrose is the feedstock for more than half of the world's fuel ethanol production and a major human food. It is harvested primarily from sugarcane and beet. Despite attempts through conventional and molecular breeding, the stored sugar concentration in elite sugarcane cultivars has not been increased for several decades. Recently, genes have been cloned for bacterial isomerase enzymes that convert sucrose into sugars which are not metabolized by plants, but which are digested by humans, with health benefits over sucrose. We hypothesized that an appropriate sucrose isomerase (SI) expression pattern might simultaneously provide a valuable source of beneficial sugars and overcome the sugar yield ceiling in plants. The introduction of an SI gene tailored for vacuolar compartmentation resulted in sugarcane lines with remarkable increases in total stored sugar levels. The high-value sugar isomaltulose was accumulated in storage tissues without any decrease in stored sucrose concentration, resulting in up to doubled total sugar concentrations in harvested juice. The lines with enhanced sugar accumulation also showed increased photosynthesis, sucrose transport and sink strength. This remarkable step above the former ceiling in stored sugar concentration provides a new perspective into plant source–sink relationships, and has substantial potential for enhanced food and biofuel production.  相似文献   

6.
The use of agriculture substrates in industrial biotechnological processes has been increasing because of their low cost. In this work, the use of clarified cashew apple juice was investigated as substrate for enzyme synthesis of prebiotic oligosaccharide. The results showed that cashew apple juice is a good source of reducing sugars and can be used as substrate for the production of dextransucrase by Leuconostoc citreum B-742 for the synthesis of oligosaccharides using the crude enzyme. Optimal oligosaccharide yield (approximately 80%) was obtained for sucrose concentrations lower than 60 g/L and reducing sugar concentrations higher than 100 g/L.  相似文献   

7.
Summary A new single-batch fermentation process for the commercial production of ethanol from refined sucrose, raw sugar, sugar cane juice and sugar cane syrup has been developed using a highly adapted and efficient strain of Zymomonas mobilis. The process gives a 94–98% sucrose hydrolysis efficiency and a 95–98% ethanol conversion efficiency. Within 24–30 h, 200 g/l sucrose is converted to produce 95.5 g/l ethanol. Reinoculation is carried out from the fermented broth without the need for centrifugation or membrane filtration.  相似文献   

8.
Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import remains to be determined.  相似文献   

9.
10.
Ethanol tolerance, osmotolerance and sugar conversion efficiency were used to screen yeasts for potential ethanol production from sweet-stem sorghum juice. Of the ten strains of Saccharomyces sp. that produced ethanol from the sorghum juice or from yeast extract/phosphate/sucrose (YEPS) media, the best sugar conversion efficiencies were greater than 85% for the strains Vin7, SB9, N96 and GSL. Vin7 and SB9 had higher sugar conversion efficiencies for sweet-stem sorghum juice, while strains N96 and GSL gave higher conversions in YEPS.The authors are with the Food and Fermentation Laboratory, Department of Biochemistry, University of Zimbabwe, M.P.167. Mount Pleasant, Harare, Zimbabwe  相似文献   

11.
Summary The ripe carob pod (pericarp) is rich in water-soluble sugars, mainly sucrose (63% on total sugars). Sucrose crystallization from aqueous carob extract is prevented by its reducing sugar content. The selective consumption of these sugars by mixed culture ofRhizopus oligosporus andSaccharomyces rouxii gives a sucrose syrup suitable for several uses e.g. sucrose extraction.  相似文献   

12.
An easy procedure for cell free biotransformation of pineapple juice sugars into dietetic derivatives was accomplished using a commercial invertase and an oxidoreductase from Zymomonas mobilis. First, pineapple juice sucrose was quantitatively converted into glucose and fructose by invertase, thus increasing the concentration of each monosaccharide in the original juice to almost twice. In a second step, glucose-fructose oxidoreductase (GFOR) transformed glucose into gluconolactone, and fructose into the low calorie sweetener sorbitol. The advantage of using GFOR is simultaneous reduction of fructose and oxidation of glucose, allowing the continuous regeneration of the essential coenzyme NADP(H), that is tightly bound to the enzyme. The yield of GFOR catalyzed sugar conversion depends on initial pH and control of pH during the reaction. At optimal conditions (pH control at 6.2) a maximum of 80% (w/v) sugar conversion was obtained. Without pH control, GFOR is inactivated rapidly due to gluconic acid formation. Therefore, conversion yields are relatively low at the natural pH of pineapple juice. The application of this process might be more advantageous on juices of other tropical fruits (papaya, jackfruit, mango) due to their naturally given higher pH.  相似文献   

13.
Several characteristics of flowers and fruits have been suggested as comprising syndromes of characters that indicate particular classes of pollinators and fruit dispersers. Common phylogenetic history among species, however, may also significantly influence these characters and obscure or enhance perceived patterns of plant syndromes. We analyzed the proportions of glucose, fructose, and sucrose by paper chromatography in the nectar and fruit juice of 525 tropical and subtropical plant species to test whether sugar chemistry was correlated with volant vertebrate pollinator or fruit disperser classes. Samples were taken from Old World and New World species and the calculations kept separate. Kruskal-Wallis tests of family means showed significant deviations in the percent sucrose content among pollinatorl disperser classes. Mann-Whitney U-tests showed significant differences among nectars of all pollinator classes but fruit juices differed only due to the high sucrose content of megachiropteran dispersed fruits. In addition, sign tests of samples occurring within families showed significant correlations between percentage sucrose content and pollinator/disperser classes. Passerine nectars had low sucrose content. In striking contrast, the nectar of hummingbird flowers had very high sucrose content. The Microchiroptera nectars showed hexose richness with a sucrose content somewhat greater than that of passerine flowers. Megachiroptera flowers showed sucrose-rich nectars. The results for fruits were comparable to those for nectars. Passerine fruits were hexose dominated, microchiropteran fruits had a sucrose content similar to passerine fruits, and megachiropteran fruits were sucrose-rich. We speculate on the evolutionary sequence of changes in nectar and fruit juice sugar composition and suggest that future investigations consider the chemistry of other food sources such as pollen and leaves. Only with these additions and other ecological studies can the full interplay of such plant-animal interactions be anticipated.  相似文献   

14.
The effect of the state of aggregation of casein (micellar or non-micellar, as milk protein concentrate [MPC] or sodium caseinate [Na-caseinate], respectively) on water sorption, plasticization, and crystallization of freeze-dried matrices containing sucrose, lactose or their blends were studied. The Guggenheim–Anderson–de Boer (GAB) equation satisfactorily fitted to the water sorption data. In most cases, sugar crystallization—studied by water sorption behavior, x-ray diffraction, and non-isothermal calorimetry—occurred significantly slower in systems containing Na-caseinate compared to MPC. The type of casein did not affect the temperature range where the glass transition (T g) was observed. Sugar/Na-caseinate mixtures showed higher instant crystallization temperatures (up to 20°C) than sugar/MPC mixtures. X-ray diffraction showed that: (a) crystallinity increased with increasing relative vapor pressure (RVP) > 44%; (b) lactose crystallized mainly as α-lactose monohydrate regardless of casein type; and (c) that sucrose crystals predominated the patterns of the sucrose/lactose mixtures. Results suggested that the way proteins organize in space (i.e., aggregation state) affected their interactions with neighboring sugar and water molecules, which led to differences in sugar crystallization behavior. Poster presented at the 4th International Workshop on Water in Food in Brussels March, 2006. Funded by CONACyT (Mexico) and Dippin’ Dots Inc., KY, USA.  相似文献   

15.
Huo X  Su D  Wang A  Zhai Y  Xu J  Li X  Bartlam M  Sun F  Rao Z 《The FEBS journal》2007,274(6):1524-1529
The mitochondrial respiratory complex II, or succinate:ubiquinone oxidoreductase, is an integral membrane protein complex in both the tricarboxylic acid cycle (Krebs cycle) and aerobic respiration. The gene sequences of each complex II subunit were measured by RT-PCR. N-terminal sequencing work was performed to identify the mitochondrial targeting signal peptide of each subunit. Complex II was extracted from porcine heart and purified by the ammonium sulfate precipitation method. The sample was solubilized by 0.5% (w/v) sugar detergent n-decyl-beta-D-maltoside, stabilized by 200 mM sucrose, and crystallized with 5% (w/v) poly(ethylene glycol) 4000. Important factors for the extraction, purification and crystallization of mitochondrial respiratory complex II are discussed.  相似文献   

16.
白蕊草组织培养和快速繁殖的研究   总被引:5,自引:0,他引:5  
通过对白蕊草组织培养的培养基种类,激素配比,添加物汁液,碳源的研究,得出适合白蕊草侧芽分化生长的最佳培养基为MS+6-BA2.0mg/L+NAA0.5mg/L 狗牙根汁液。诱导愈伤组织以2,4-D浓度在0.5mg/L-2mg/L之间最佳。碳源以蔗糖,浓度3%最佳。生根实验表明:较低浓度的生长素不利于生根,最佳生根培养基为MS+6-BA0.5mg/L NAA2mg/L 狗牙根汁液或MS+6-BA0.5mg/L IBA2mg/L 狗牙根汁液。  相似文献   

17.
Citrus fruits accumulate high levels of sucrose and hexoses, although most photoas-similates arrive in the form of sucrose. In sweet limes, faster rates of sugar accumulation take place early in development when sucrose catabolic enzymes are most active. The present investigation was aimed at providing information on the mechanisms of sucrose (and hexose) uptake into the vacuole of cells containing high levels of sucrose hydrolytic activity. Tonoplast vesicles of high purity were isolated in a discontinuous sucrose gradient. The vesicles were capable of forming a pH gradient in the presence of ATP. Both bafilomycin and NO3 (but not vanadate) inhibited ATP hydrolysis and prevented the formation of the pH gradient, confirming the tonoplast origin. Energized vesicles (either by addition of ATP or by artificial pH gradient) did not accumulate sucrose or hexoses against a concentration gradient. In the presence of either sucrose or hexoses, the established ΔpH; was not disrupted as was the case with tonoplast vesicles from red beet hypocotyl. Therefore, a sucrose/H+ (hexose) antiport may not be the mechanism of sucrose and hexose transport into the vacuoles of sweet lime juice cells. The data indicated that sucrose uptake into vacuoles of sweet lime occurs by facilitated diffusion. Hexoses originate from the hydrolytic action of acid invertase on sucrose within the vacuole, and by the action of cytosolic sucrose synthase.  相似文献   

18.
甘蔗品质指标的通径分析和因子分析   总被引:4,自引:0,他引:4  
应用通径分析和因子分析方法,对36个甘蔗品种(系)的11个品质指标数据进行分析。简单相关分析结果表明,甘蔗蔗糖分除了与蔗渣蒸煮液失水量没有显著相关外,与其他9个品质指标均有显著或极显著相关性。甘蔗纤维分与甘蔗出汁率、蔗汁折光锤度、蔗汁旋光读数、蔗汁直接转光度、蔗汁间接转光度和蔗渣含水量有极显著相关性,而与蔗渣蒸煮液失水量、蒸煮液的折光锤度和蒸煮液的旋光读数的相关性不显著。通径分析结果表明,甘蔗蔗糖分主要受甘蔗出汁率、蔗汁直接转光度、蔗汁间接转光度、蔗渣蒸煮液失水量和蒸煮液的旋光读数等5个指标影响较大,而甘蔗纤维分主要受甘蔗出汁率、蔗渣含水量、蔗渣蒸煮液失水量和蒸煮液的折光锤度等4个指标影响较大。因子分析结果表明,9个甘蔗品质指标可由4个主因子所代表。其特征值的累计贡献率迭94.30%。前3个主因子分别为蔗汁糖分指标因子、蔗渣糖分指标因子和蔗渣水分因子。其特征值的累计贡献率达83.06%,第4个主因子只有蔗渣蒸煮液失水量载荷值较大。  相似文献   

19.
Thirty-eight cultures of sweet sorghum (Sorghum bicolor, Poaceae) at dead-ripe stage showed that the cultures IS 6962, IS 9889, PR 4579, and IS 707 contained higher amounts of total sugars per 100 ml of extractable juice. But total sugar yield was found to be high (>200 kg/ha) in IS 715, IS 724, IS 6962, and IS 9901. Though upper internodes contained comparatively higher sugar content than the bottom internodes, the seventh internode had the maximum. A highly positive correlation (+0.9828) was found to exist between total sugars and sucrose in the internodes. Fermentation of juice from IS 6962 yielded 240 litre of alcohol/ha. Roasted chickpea candies prepared from syrup of 73o brix resembled that from jaggery in taste and flavour.  相似文献   

20.
Satsuma mandarin fruit (Citrus unshiu Mark.) photosynthesizes as comparable to leaf at about 100 days after full bloom (DAFB). In this study, translocation and accumulation of fruit-fixed photosynthate were investigated by using 14CO2. When fruit at 108 DAFB was exposed to 14CO2 for 48 h under 135 photosynthetic photon flux density (PPFD), 14C-sucrose, 14C-glucose and 14C-fructose were detected not only in flavedo but juice sac; more than 50?% of fruit assimilated 14C-sugars were present in juice sac. Thus, majority of rind-fixed photosynthate are infiltrated into juice sac and accumulated there within 48 h after assimilation. Although 14C-sucrose was predominant at flavedo where high SS (sucrose synthase) activity toward synthesis was present, the amount decreased gradually from the outside (flavedo) to the inside (juice sac) of fruit. In vascular bundle, strong SS toward cleavage and soluble acid invertase activities were involved, and 14C-fructose was predominant in juice sac. Accordingly, rind-fixed photosynthate is once converted to sucrose, the translocated sugar in Citrus, at flavedo by SS toward synthesis, and loaded on vascular bundle through symplastic and/or apoplastic movement in the albedo tissue. In the vascular bundle, sucrose may be degraded by SS toward cleavage and invertase, and resulting hexoses transported symplastically to the juice sac through juice stalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号