首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Folate-activated one-carbon units are derived from serine through the activity of the pyridoxal-phosphate (PLP)-dependent isozymes of serine hydroxymethyltransferase (SHMT). The effect of vitamin B(6) availability on the activity and expression of the human mitochondrial and cytoplasmic SHMT isozymes was investigated in human MCF-7 cells. Cells were cultured for 6 months in vitamin B(6) replete (4.9 microM pyridoxine) minimal essential medium (alphaMEM) or vitamin B(6)-deficient medium containing 49, 4.9 or 0.49 nM pyridoxine. Total cellular PLP levels and SHMT activity were reduced 72% and 7%, respectively, when medium pyridoxine was decreased from 4.9 microM to 49 nM. Cells cultured in medium containing 4.9 nM pyridoxine exhibited 75%, 27% and 60% reduced levels of PLP, SHMT activity and S-adenosylmethionine, respectively, compared to cells cultured in alphaMEM. Cytoplasmic SHMT activity and protein levels, but not mRNA levels, were decreased in cells cultured in vitamin B(6) deficient medium, whereas mitochondrial SHMT activity and protein levels were less sensitive to vitamin B(6) availability. PLP bound to cytoplasmic SHMT with a K(d)=850 nM, a value two orders of magnitude lower than previously reported for the bovine cytoplasmic SHMT isozyme. Collectively, these data indicate that vitamin B(6) restriction decreases the activity and stability of SHMT, and that the cytoplasmic isozyme is more sensitive to vitamin B(6) deficiency than the mitochondrial isozyme in MCF-7 cells.  相似文献   

3.
We reported that pyridoxal phosphate (PAP), a coenzyme form of vitamin B6, strongly inhibits activities of cathepsin B and weakly inhibits those of cathepsins S, K, and C in vitro. Either intraperitoneal injection or peroral administration of medication doses of vitamin B6 in the diet caused dose-dependent inhibition of hepatic cathepsins B, L, S, and C, and the inhibition was exhibited much more significantly in the case of a high protein diet than in a low protein diet. Administration of vitamin B6 induced the suppression of immune responses against ovalbumin (OVA) mediated by helper T lymphocyte type-2, based on the suppression of antigen processing by cathepsin B inhibition, as in the case of CA-074 administration, a cathepsin B specific inhibitor. Ovalbumin-dependent production of immunoglobulins IgE, IgG1 and interleukin IL-4 was suppressed by administration of medication doses of pyridoxal (PA) or pyridoxine (PI), while the production of IgG2alpha and interferon (INF)-gamma mediated by helper T lymphocyte type 1 was not changed. Administration of medication doses of vitamin B6 caused the inhibition of intracellular cathepsin B activity due to suppression of the functions of helper T lymphocyte type-2.  相似文献   

4.
Kar S  Lefterov IM  Wang M  Lazo JS  Scott CN  Wilcox CS  Carr BI 《Biochemistry》2003,42(35):10490-10497
A synthetic K vitamin analogue, 2-(2-mercaptothenol)-3-methyl-1,4-naphthoquinone or Cpd 5, was previously found to be a potent inhibitor of cell growth [Nishikawa et al., (1995) J. Biol. Chem. 270, 28304-28310]. The mechanisms of cell growth were hypothesized to include the inactivation of cellular protein tyrosine phosphatases, especially the Cdc25 family [Tamura et al. (2000) Cancer Res. 60, 1317-1325]. In this study, we synthesized PD 49, a new biotin containing Cpd 5 derivative, to search for evidence of direct interaction of these arylating analogues with Cdc25A, Cdc25B, and Cdc25C phosphatases. PD 49 was shown to directly bind to GST-Cdc25A, GST-Cdc25B, their catalytic fragments, and GST-Cdc25C. The binding could be competed with excess glutathione or Cpd 5, and a cysteine-to-serine mutation of the catalytic cysteine abolished binding. This was consistent with an involvement in binding of cysteine in the catalytic domain. This interaction between PD 49 and Cdc25 also occurred in lysates of treated cells. PD 49 also bound to protein phosphatases other than Cdc25. We found that the new analogue also inhibited Hep3B human hepatoma cell growth. This growth inhibition involved ERK1/2 phosphorylation and was inhibited by a MEK antagonist. The results demonstrate a direct interaction and binding between this growth-inhibiting K vitamin derivative with both purified as well as with cellular Cdc25A, Cdc25B, and Cdc25C.  相似文献   

5.
Vitamin K is the collective term for compounds that share a 2-methyl-1,4-naphthoquinone ring, but differ in the side-chain at the 3-position. We synthesized novel 2-methyl-1,4-naphthoquinone derivatives with different side chain length at the 3-position. Derivatives with C-14 and C-16 tails showed the highest in vitro bioactivity resulting in 2.5 and 2-fold higher carboxylated osteocalcin synthesis in MG63 cells than menaquinone-4 (MK-4, form of vitamin K2). Longer side chain lengths resulted in lower bioactivity. The in vivo vitamin K activity of the C-14 tail derivative was further tested in WKY rats receiving a vitamin K-deficient diet that resulted in a 40% decrease of prothrombin activity. The C-14 tail derivative was able to counteract the effects on vitamin K deficiency induced by the diet and resulted in the complete restoration of prothrombin activity. Compared to naturally occurring forms of vitamin K, synthetic vitamin K derivatives may have higher bioactivity and different pharmacological characteristics that are more favorable for use as supplements or in clinical settings.  相似文献   

6.
This study was performed to determine whether corticosterone (B), the major glucocorticoid of rat, is metabolized to its 6 beta-OH derivative (6 beta-OH-B) and whether this derivatives has any effects on Na+ or K+ transport in rat kidney. Normal and adrenalectomized (adx) rats were injected with [3H]B and urine was collected for 5 h and examined for metabolites of B. Metabolites were collected by solid phase extraction on mu Bondapak C18 cartridges and fractionated by reversed phase high performance liquid chromatography. Fractions coeluting with 6 beta-OH-B were rechromatographed by normal phase thin layer chromatography. Approximately 5% of the radioactivity recovered from the urine of both intact and adx rats cochromatographed with 6 beta-OH-B on the two systems. Mass spectra of this fraction were virtually identical to those of authentic 6 beta-OH-B, demonstrating that rats do metabolize B to its 6 beta-OH derivative. To evaluate the biological activity of this metabolite, adx rats were injected with NaCl and KCl and with varying dosage of either 6 beta-OH-B or reference steroids (aldosterone, B, 6 beta-OH-F). 6 beta-OH-B produced a significant antinatriuresis at all doses. Kaliuresis occurred only at the highest dose and creatinine excretion increased, suggesting increased glomerular filtration from a glucocorticoid effect. Although 6 beta-OH-B may simply be exerting mineralo- and glucocorticoid actions there are two unexplained findings. First, 6 beta-OH-B (10 micrograms/100 g) significantly decreased urinary K excretion with associated antinatriuresis, an effect which has not been seen with Aldo administration. Second, neither a kaliuretic nor antinatriuretic effect of 6 beta-OH-B could be demonstrated in experiments using a method to enhance mineralocorticoid induced K+ excretion (K+ deprivation and NaCl loading only). Yet, the dose used was clearly antinatriuretic in the initial bioassay. It is concluded that the rat is capable of metabolizing B to its 6 beta-OH-B derivative which appears in substantial quantity in the urine. This metabolite produces antinatriuresis in the adrenalectomized rat.  相似文献   

7.
The gene product of mll6785 of a nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099 was identified as pyridoxine 4-oxidase, the first enzyme in the vitamin B6-degradation pathway. The gene was cloned and ligated into pET-21a+. Escherichia coli BL21(DE3) was co-transformed with the constructed plasmid plus pKY206 containing groESL genes encoding chaperonins. The overexpressed protein was purified to homogeneity by the ammonium sulfate fractionation and three chromatography steps. The enzymatic properties of the purified protein, such as K(m) values for pyridoxine (213+/-19 microM) and oxygen (78+/-10 microM), were compared to those of pyridoxine 4-oxidase from two bacteria with known vitamin B6-degradation pathway. M. loti grown in a Rhizobium medium showed the enzyme activity. The results suggest that M. loti also contains the degradation pathway of vitamin B6.  相似文献   

8.
Vitamin K is essential for blood coagulation and bone metabolism in mammals. This vitamin functions as a cofactor in the posttranslational synthesis of γ-carboxyglutamic acid (Gla) from glutamic acid residues. However, other functions of vitamin K have been reported recently. We previously found that vitamin K suppresses the inflammatory reaction induced by lipopolysaccharide (LPS) in rats and human macrophage-like THP-1 cells. In this study, we further investigated the mechanism underlying the anti-inflammatory effect of vitamin K by using cultures of LPS-treated human- and mouse-derived cells. All the vitamin K analogues analyzed in our study exhibited varied levels of anti-inflammatory activity. The isoprenyl side chain structures, except geranylgeraniol, of these analogues did not show such activity; warfarin did not interfere with this activity. The results of our study suggest that the 2-methyl-1,4-naphtoquinone ring structure contributes to express the anti-inflammatory activity, which is independent of the Gla formation activity of vitamin K. Furthermore, menaquinone-4, a form of vitamin K2, reduced the activation of nuclear factor κB (NFκB) and inhibited the phosphorylation of IKKα/β after treatment of cells with LPS. These results clearly show that the anti-inflammatory activity of vitamin K is mediated via the inactivation of the NFκB signaling pathway.  相似文献   

9.
10.
1. The effects of 20 kinds of vitamins or their analogues on the growth rate of preadipocytes and the terminal differentiation of preadipocytes to adipocytes was systematically compared in 3T3-L1 cells. 2. The addition of vitamin C markedly increased the growth rate of preadipocytes at over 50 microM. 3. The addition of vitamin K3 slowed down the growth rate at over 0.1 microM. 4. In water soluble vitamins and their analogues tested, the vitamin B6 group and vitamin C significantly stimulated the differentiation, and consequently increased the glycerophosphate dehydrogenase activity and triglyceride accumulation, to a concentration of over 10 microM. 5. Many fat soluble vitamins and their analogues (the vitamin A group, including beta-carotene, the vitamin D group, vitamin E and the vitamin K group) strongly inhibited the adipose conversion of 3T3-L1 cells at microM level.  相似文献   

11.
We previously identified vitamin B6 deficiency in a child presenting with seizures whose primary diagnosis was the inherited disorder hyperprolinemia type II. This is an unrecognized association, which was not explained by diet or medication. We hypothesized that pyridoxal phosphate (vitamin B6 coenzyme) was de-activated by L-Delta(1)-pyrroline-5-carboxylic acid, the major intermediate that accumulates endogenously in hyperprolinemia type II. The proposed interaction has now been investigated in vitro with high resolution 1H nuclear magnetic resonance spectroscopy and mass spectrometry at a pH of 7.4 and temperature of 310 K. Three novel adducts were identified. These were the result of a Claisen condensation (or Knoevenagel type of reaction) of the activated C-4 carbon of the pyrroline ring with the aldehyde carbon of pyridoxal phosphate. The structures of the adducts were confirmed by a combination of high performance liquid chromatography, nuclear magnetic resonance, and mass spectrometry. This interaction has not been reported before. From preliminary observations, pyrroline-5-carboxylic acid also condenses with other aromatic and aliphatic aldehydes and ketones, and this may be a previously unsuspected generic addition reaction. Pyrroline-5-carboxylic acid is thus found to be a unique endogenous vitamin antagonist. Vitamin B6 de-activation may contribute to seizures in hyperprolinemia type II, which are so far unexplained, but they may be preventable with long term vitamin B6 supplementation.  相似文献   

12.
Single neonatal treatment with 25 microg vitamin D(3) significantly decreased the thymic glucocorticoid receptor density (B(max)) of 6-week-old male rats. In females, a similar treatment did not cause any changes. Single vitamin D(3) treatment (50 microg) during adolescence (i.e. 6-week-old animals) significantly increased the glucocorticoid receptor density in adult (10-week-old) males. No significant changes in receptor affinity (K(d)) could be observed. Considering that in earlier experiments similar neonatal treatments influenced bone mineral mass and sexual behavior, the hormonal imprinting effect of vitamin D(3) and its harmful effect on the development of other members of the steroid receptor superfamily, seems to be unquestionable.  相似文献   

13.
Biosynthesis of Vitamin B6 by a Yeast Mutant   总被引:1,自引:0,他引:1  
The gradient-plate technique was employed to isolate mutants of Saccharomyces marxianus (NRRL-Y-1550) which, when grown in a synthetic culture medium, excreted about 2 mug/ml of vitamin B(6) as ascertained by microbiological assay. The major component that possessed vitamin B(6) activity was isolated by ion-exchange column chromatography and identified as pyridoxol by ultraviolet and fluorescence spectroscopy, as well as by paper chromatography and various chemical tests. Pyridoxal was also identified as one of the excreted compounds. Two other compounds that possessed vitamin B(6) activity were excreted in smaller quantities in the growth medium and have not yet been identified; they are not phosphates of vitamin B(6). The amount of vitamin B(6) excreted was not increased when the mutant was grown in the presence of various oxidation products of this vitamin. The methods and results reported here may be helpful in future studies on the biosynthesis of vitamin B(6).  相似文献   

14.
Zhang W  Hong D  Zhou Y  Zhang Y  Shen Q  Li JY  Hu LH  Li J 《Biochimica et biophysica acta》2006,1760(10):1505-1512
Protein tyrosine phosphatase 1B (PTP1B) is a key element in the negative regulation of the insulin signaling pathway and may play an important role in diabetes and obesity. We identified ursolic acid, a natural pentacyclic triterpenoid that occurs widely in traditional Chinese medicinal herbs, as an inhibitor of PTP1B by screening an extract library of the traditional Chinese medicinal herbs used a diabetes clinic. By modifying urosolic acid, we designed and synthesized a derivative with a K(i) of 283 nM. As competitive inhibitors of PTP1B, ursolic acid and its derivative also inhibit T-cell protein tyrosine phosphatase and src homology phosphatase-2 but not leucocyte antigen-related phosphatase or protein tyrosine phosphatase alpha and epsilon, which are all possibly involved in the insulin pathway. The ursolic acid derivative enhanced insulin receptor phosphorylation in CHO/hIR cells and stimulate glucose uptake in L6 myotubes.  相似文献   

15.
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by a progressive mineralization of connective tissue, resulting in skin, arterial and eye disease. Classical PXE is caused by mutations in the ABCC6 gene, which encodes a member of the ABCC (MRP) family of organic anion transporters. Recent studies on Abcc6-/- mice show that the absence of ABCC6 in the liver is crucial for PXE and confirm the “metabolic disease hypothesis” for PXE, which states that tissue calcification is due to the absence of a plasma factor secreted from the basolateral hepatocyte membrane.

We propose that this plasma factor is vitamin K (precursor). We propose that vitamin K (precursor) is secreted by ABCC6 from the liver as a glutathione – (or glucuronide)-conjugate and that this supplements the vitamin K need of peripheral tissues that receive insufficient vitamin from the diet, because dietary vitamin K is effectively extracted from blood by the liver. Peripheral tissue vitamin K is needed for the gamma-carboxylation of glutamate residues in proteins known to be required for counteracting calcification of connective tissue throughout the body.

Our hypothesis explains the known facts of PXE and also explains why PXE-like symptoms can occur in patients with mutations in the gamma-glutamyl carboxylase gene (encoding the enzyme responsible for protein carboxylase) and in rats treated with vitamin K antagonists. The hypothesis implies that the symptoms of PXE can be prevented or mitigated by providing patients (intravenously) with a form of plasma vitamin K (precursor) that can be used by peripheral tissues.  相似文献   

16.
Using an adapted assay that requires an enzyme aliquot that forms only 5 pmoles vitamin K, we were able to demonstrate vitamin K1 2,3 epoxide reductase activity in cultured B16 mouse melanoma cells. The enzyme uses dithiothreitol, but not NADH as a reducing cofactor and is sensitive to inhibition by warfarin (2% residual activity at 10 micrograms/ml warfarin). Incubation of B16 cells in culture with 30 micrograms/ml warfarin leads to an 45% residual reductase as compared to normally cultured B16 cells. Combined with the reported presence of vitamin K dependent carboxylase in B16 cells and the cytotoxicity of warfarin towards B16 cells this suggests an active vitamin K cycle in these melanoma cells that may be essential for survival.  相似文献   

17.
A modification of the assay for vitamin K-dependent carboxylase is described with which the enzyme could be detected in relatively low amounts of cells (n = 106). Using this assay, we could demonstrate vitamin K-dependent carboxylase activity in hepatocytes, renal tubular cells, osteoblasts, endothelial cells and macrophages, but not in lymphocytes or platelets. The cultured tumor cells UMR-106, B16 and 5583 also contained vitamin K-dependent carboxylase activity. Vitamin K epoxide reductase activity was demonstrated only in cells where vitamin K-dependent carboxylase activity was present. The tumor cells possessed remarkably less K epoxide reductase activity than the normal cells. When cells were cultured in medium containing warfarin, the K epoxide reductase activity was found to be decreased and the amount of non-carboxylated precursor protein and increased, suggesting an analogous vitamin K mechanism as in liver.  相似文献   

18.
Bacteroides melaninogenicus requires vitamin K for normal growth. Cells incubated in a vitamin K-free medium form defective cell envelopes. Studies with vitamin K-grown "K(+)" and vitamin K-depleted "K(-)" cells showed that [(14)C]choline and [(14)C]glycerol were not taken up, but several amino acids and acetate were incorporated to the same degree by both types of cultures. However, K(-) cells incorporated succinate to a greater degree than did K(+) cultures. The relative incorporation of succinate into ceramide phosphorylethanolamine and ceramide phosphorylglycerol was depressed compared with incorporation into phosphatidylethanolamine in K(-) cultures. B. melaninogenicus can be grown in serial subculture in the absence of vitamin K in the presence of 2.5 mg/ml of succinate. Under these conditions the relative incorporation of [2,3-(14)C]succinate and (32)P into ceramide phosphorylethanolamine and ceramide phosphorylglycerol is markedly depressed. Stimulation of phosphosphingolipid synthesis by vitamin K was shown by comparing the uptake of (32)P and lipid phosphorus levels of a succinate-grown, vitamin K-depleted culture supplemented with (32)P plus 0.1 micro g/ml vitamin K(1) with a similar culture supplemented with (32)P only. The phosphosphingolipids from the vitamin K-supplemented cells incorporated greater amounts of (32)P and had higher levels of phosphorus than did the ceramide phosphorylethanolamine and ceramide phosphorylglycerol of the culture without added vitamin K. It was further shown that vitamin K added to a vitamin K-depleted culture stimulated synthesis of ceramide phosphorylethanolamine and ceramide phosphorylglycerol 38 min and 60 min, respectively, following the addition of the vitamin; incorporation of (32)P into other phospholipids was unaffected.  相似文献   

19.
This review describes current research on the preventive effect of dietary vitamin B(6) against colon tumorigenesis and its possible mechanisms. Studies in cell culture have demonstrated that high levels of vitamin B(6) suppress growth of some cancer cells. From these studies it has been considered that supraphysiological doses of vitamin B(6) suppress tumor growth and metastasis. However, recent rodent study has indicated that azoxymethane-induced colon tumorigenesis in mice is suppressed by moderate doses of dietary vitamin B(6.) Epidemiological studies also support an inverse relationship between vitamin B(6) intake and colon cancer risk. Potential mechanisms underlying the preventive effect of dietary vitamin B(6) have been suggested to include the suppression of cell proliferation, oxidative stress, nitric oxide (NO) synthesis, and angiogenesis.  相似文献   

20.
1. A study was made of the effects of injected l-methionine on the activity of several enzymes of folate metabolism, and on the transport of methotrexate in liver preparations from vitamin B(12)-deficient ewes and their pair-fed controls receiving vitamin B(12). 2. The activities of dihydrofolate reductase (EC 1.5.1.3) and 5-methyltetrahydrofolate-homocysteine transmethylase were significantly decreased in the liver of vitamin B(12)-deficient animals, but were unaffected by l-methionine. 3. The concentration of S-adenosyl-l-methionine in the liver of deficient animals was about one-half of that in normal animals, and was restored to normal by either vitamin B(12) or l-methionine. 4. Methylenetetrahydrofolate reductase (EC 1.1.1.68) from sheep liver was inhibited by S-adenosyl-l-methionine in vitro, but not by concentrations of S-adenosyl-l-methionine found in the liver of vitamin B(12)-deficient animals after injection of physiological amounts of l-methionine. 5. Pteroylpolyglutamate synthetase activity was significantly increased in the liver of vitamin B(12)-deficient animals, and was decreased by intravenous injections of l-methionine. 6. l-Methionine injections increased the initial rate of uptake of methotrexate in liver slices from deficient animals and acted synergistically with vitamin B(12) to increase the quantity taken up in 40min. The failure of folate metabolism in vitamin B(12) deficiency can be satisfactorily explained if l-methionine similarly affects the membrane transport of naturally occurring folates. 7. Further details of the results have been deposited as Supplementary Publication SUP 50028 (4 pages) at the British Library (Lending Division), (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号