首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Llansola  Marta  Felipo  Vicente 《Neurochemical research》1998,23(12):1533-1537
We previously found that carnitine prevents glutamate neurotoxicity and that this effect is mediated by activation of metabotropic glutamate receptors. We show now that carnitine inhibits the hydrolysis of inositol phospholipids induced by different agonists of metabotropic glutamate receptors (tACPD; (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid; DHPG, (R,S)-3,5-dyhydroxyphenylglycine or S4C3HPG, (S)-4-carboxy-3-hydroxyphenylglycine). The EC50 was ca. 170 M and the inhibition was complete at 1 mM carnitine. Carnitine also inhibits completely hydrolysis of inositol phospholipids induced by arterenol (agonist of adrenoceptors) and only partially (ca. 50%) that induced by carbachol (agonist of muscarinic receptors). Carnitine did not inhibit phospholipase C activity but inhibits partially (43%) the hydrolysis of inositol phospholipids induced by direct activation of G proteins with AIP-4. The results reported indicate that carnitine inhibits the hydrolysis of inositol phospholipids induced by activation of metabotropic receptors likely by interfering the function of some types of G proteins.  相似文献   

2.
Recent findings suggest that astrocytes respond to neuronally released neurotransmitters with Ca2+ elevations. These Ca2+ elevations may trigger astrocytes to release glutamate, affecting neuronal activity. Neuronal activity is also affected by modulatory neurotransmitters that stimulate G protein-coupled receptors. These neurotransmitters, including acetylcholine and histamine, might affect neuronal activity by triggering Ca2+-dependent release of neurotransmitters from astrocytes. However, there is no physiological evidence for histaminergic or cholinergic receptors on astrocytes in situ. We asked whether astrocytes have these receptors by imaging Ca2+-sensitive dyes sequestered by astrocytes in hippocampal slices. Our results show that immunocytochemically identified astrocytes respond to carbachol and histamine with increases in intracellular free Ca2+ concentration. The H1 histamine receptor antagonist chlorpheniramine inhibited responses to histamine. Similarly, atropine and the M1-selective muscarinic receptor antagonist pirenzepine inhibited carbachol-elicited responses. Astrocyte responses to histamine and carbachol were compared with responses elicited by alpha1-adrenergic and metabotropic glutamate receptor agonists. Individual astrocytes responded to different subsets of receptor agonists. Ca2+ oscillations were the prevalent response pattern only with metabotropic glutamate receptor stimulation. Finally, functional alpha1-adrenergic receptors and muscarinic receptors were not detected before postnatal day 8. Our data show that astrocytes have acetylcholine and histamine receptors coupled to Ca2+. Given that Ca2+ elevations in astrocytes trigger neurotransmitter release, it is possible that these astrocyte receptors modulate neuronal activity.  相似文献   

3.
The involvement of glutamate receptors in GABA release in ischemia was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice. For in vitro ischemia, the slices were superfused in glucose-free media under nitrogen. Ionotropic glutamate receptor agonists failed to affect the ischemia-induced basal GABA release at either age. The K(+)-stimulated release in the immature hippocampus was potentiated by N-methyl-D-aspartate receptors, whereas in adults this release was reduced by both kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor activation. The group I metabotropic receptor agonist (1+/-)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal ischemic GABA release in a receptor-mediated manner in adults, this being concordant with the positive modulation of GABAergic neurotransmission by group I metabotropic glutamate receptors. (1 +/-)-1-Aminocyclopentane-trans-1,3-dicarboxylate and (S)-3,5-dihydroxyphenylglycine also enhanced the K(+)-stimulated release in the developing hippocampus in a receptor-mediated manner. Because group I receptors generally increase neuronal excitability, the enhanced GABA release may attenuate hyperexcitation or strengthen inhibition, being thus neuroprotective, particularly under ischemic conditions. Group III metabotropic glutamate receptors were not at all involved in ischemic GABA release in the immature mice, but in adults their activation by O-phospho-L-serine potentiated the basal release and reduced the K(+)-stimulated release. These opposite effects were abolished by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Metabotropic glutamate receptors, namely group I and III receptors, are able to modify the release of GABA from hippocampal slices under ischemic conditions, both positive and negative effects being discernible, depending on the age and type of receptor activated.  相似文献   

4.
Glutamate excitotoxicity may culminate with neuronal and glial cell death. Glutamate induces apoptosis in vivo and in cell cultures. However, glutamate-induced apoptosis and the signaling pathways related to glutamate-induced cell death in acute hippocampal slices remain elusive. Hippocampal slices exposed to 1 or 10 mM glutamate for 1 h and evaluated after 6 h, showed reduced cell viability, without altering membrane permeability. This action of glutamate was accompanied by cytochrome c release, caspase-3 activation and DNA fragmentation. Glutamate at low concentration (10 μM) induced caspase-3 activation and DNA fragmentation, but it did not cause cytochrome c release and, it did not alter the viability of slices. Glutamate-induced impairment of hippocampal cell viability was completely blocked by MK-801 (non-competitive antagonist of NMDA receptors) and GAMS (antagonist of KA/AMPA glutamate receptors). Regarding intracellular signaling pathways, glutamate-induced cell death was not altered by a MEK1 inhibitor, PD98059. However, the p38MAPK inhibitor, SB203580, prevented glutamate-induced cell damage. In the present study we have shown that glutamate induces apoptosis in hippocampal slices and it causes an impairment of cell viability that was dependent of ionotropic and metabotropic receptors activation and, may involve the activation of p38MAPK pathway.  相似文献   

5.
The selective metabotropic glutamate receptor agonist trans-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) stimulates phosphoinositide hydrolysis and elicits several physiological responses in rat hippocampal slices. However, recent studies suggest that the physiological effects of trans-ACPD in the hippocampus are mediated by activation of a receptor that is distinct from the phosphoinositide hydrolysis-linked receptor. Previous experiments indicate that cyclic AMP mimics many of the physiological effects of trans-ACPD in hippocampal slices. Furthermore, recent cloning and biochemistry experiments indicate that multiple metabotropic glutamate receptor subtypes exist, some of which are coupled to yet unidentified effector systems. Thus, we performed a series of experiments to test the hypothesis that ACPD increases cyclic AMP levels in hippocampal slices. We report that 1S,3R- and 1S,3S-ACPD (but not 1R,3S-ACPD) induce a concentration-dependent increase in cyclic AMP accumulation in hippocampal slices. This effect was blocked by the metabotropic glutamate receptor antagonist L-2-amino-3-phosphonoproprionic acid but not by selective antagonists of ionotropic glutamate receptors. Furthermore, our results suggest that 1S,3R-ACPD-stimulated increases in cyclic AMP accumulation are not secondary to increases in cell firing or to activation of phosphoinositide hydrolysis.  相似文献   

6.
Abstract: In the present work we show the development of carbachol-induced accumulation of 3H-inositol phosphates (3H-InsPs) in the chick embryonic retina and its regulation by glutamate receptors. Although basal levels of 3H-InsPs increased during development, the retinal response to carbachol was high in the early developing stages and decreased after synaptogenesis in the retina. Eserine also stimulated the turnover of phosphoinositides in the embryonic but not in the mature retina. The effect of eserine could be blocked by atropine, suggesting that acetylcholine could be released from developing retina cells and further stimulate the turnover of InsPs in the embryonic tissue. Our data also show that muscarinic stimulation of turnover of 3H-InsPs could be blocked by stimulation of glutamatergic ionotropic receptors. Moreover, the effect of glutamate agonists did not seem to be mediated by the release of other neurotransmitters such as GABA, glycine, adenosine, or dopamine from the tissue because these neurotransmitters did not interfere with the retinal response to carbachol. These results suggest that muscarinic activation of phosphoinositide turnover occurs mainly in the embryonic retina and that activation of glutamate receptors can inhibit directly the muscarinic stimulation of hydrolysis of 3H-InsPs in this tissue.  相似文献   

7.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices.  相似文献   

8.
In rat hippocampal slices kept in Krebs-Henseleit medium, an increase of K+ ions to 12 mM potentiates the stimulation of phosphoinositide turnover elicited by carbachol and (+/-)-cis-methyldioxolane. Oxotremorine is inactive if tested in Krebs-Henseleit medium but it stimulates by 220% the phosphoinositide turnover when K+ is increased to 12 mM. The K+ facilitation of the carbachol stimulation of phosphoinositide turnover was blocked by pirenzepine, a muscarinic antagonist. This drug was equally potent in inhibiting the carbachol stimulation of phosphoinositide turnover both in normal and 12 mM K+ Krebs medium. This facilitatory effect of K+ appears to be preferential for muscarinic receptors, since it failed to increase the activation of phosphoinositide breakdown induced by norepinephrine and histamine. The K+ potentiation of the muscarinic stimulation of phosphoinositide turnover is not mediated by a release of one of the endogenous neurotransmitters stored in these slices because such a facilitation occurs in Ca2+-deprived Krebs-Henseleit medium and failed to occur following a depolarizing dose of veratrine. Our experiments excluded that K+ facilitates carbachol stimulation of phosphoinositide turnover because it modifies the binding characteristics of muscarinic receptors; however, they cannot exclude that K+ acts at the receptor transducer coupling.  相似文献   

9.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

10.
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration.  相似文献   

11.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

12.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

13.
Hippocampal metabotropic glutamate 5 receptors (mGlu5Rs) regulate both physiological and pathological responses to glutamate. Because mGlu5R activation enhances NMDA-mediated effects, and given the role played by NMDA receptors in synaptic plasticity and excitotoxicity, modulating mGlu5R may influence both the physiological and the pathological effects elicited by NMDA receptor stimulation. We evaluated whether adenosine A2A receptors (A(2A)Rs) modulated mGlu5R-dependent effects in the hippocampus, as they do in the striatum. Co-application of the A(2A)R agonist CGS 21680 with the mGlu5R agonist (RS)-2-chloro-s-hydroxyphenylglycine(CHPG) synergistically reduced field excitatory postsynaptic potentials in the CA1 area of rat hippocampal slices. Endogenous tone at A(2A)Rs seemed to be required to enable mGlu5R-mediated effects, as the ability of CHPG to potentiate NMDA effects was antagonized by the selective A(2A)R antagonist ZM 241385 in rat hippocampal slices and cultured hippocampal neurons, and abolished in the hippocampus of A(2A)R knockout mice. Evidence for the interaction between A(2A)Rs and mGlu5Rs was further strengthened by demonstrating their co-localization in hippocampal synapses. This is the first evidence showing that hippocampal A(2A)Rs and mGlu5Rs are co-located and act synergistically, and that A(2A)Rs play a permissive role in mGlu5R receptor-mediated potentiation of NMDA effects in the hippocampus.  相似文献   

14.
Astrocytes have been shown to release factors that have promoting or inhibiting effects on neuronal development. However, mechanisms controlling the release of such factors from astrocytes are not well established. Astrocytes express muscarinic receptors whose activation stimulates a robust intracellular signaling, although the role of these receptors in glial cells is not well understood. Acetylcholine and acetylcholine receptors are present in the brain before synaptogenesis occurs and are believed to be involved in neuronal maturation. The present study was undertaken to investigate whether stimulation of muscarinic receptors in astrocytes would modulate neurite outgrowth in hippocampal neurons. Rat hippocampal neurons, co-cultured with rat cortical astrocytes previously exposed to the cholinergic agonist carbachol, displayed longer neurites. The effect of carbachol in astrocytes was due to the activation of M3 muscarinic receptors. Exposure of astrocytes to carbachol increased the expression of the extracellular matrix proteins fibronectin and laminin-1 in these cells. This effect was mediated in part by an increase in laminin-1 and fibronectin mRNA levels and in part by the up-regulation of the production and release of plasminogen activator inhibitor-1, an inhibitor of the proteolytic degradation of the extracellular matrix. The inhibition of fibronectin activity strongly reduced the effect of carbachol on the elongation of all the neurites, whereas inhibition of laminin-1 activity reduced the elongation of minor neurites only. Plasminogen activator inhibitor-1 also induced neurite elongation through a direct effect on neurons. Taken together, these results demonstrate that cholinergic muscarinic stimulation of astrocytes induces the release of permissive factors that accelerate neuronal development.  相似文献   

15.
16.
In the presence of lithium, carbamylcholine chloride (carbachol) and epinephrine increase the accumulation of inositol monophosphate severalfold in hippocampal slices from the rat. The stimulation by carbachol (EC50, 31 microM) is mediated by muscarinic receptors, whereas the effects of epinephrine (EC50, 2 microM) are due to activation of alpha 1-adrenergic receptors. The responses of epinephrine and carbachol are additive, even under conditions that significantly reduce the levels of phosphoinositides and free inositol, suggesting that the muscarinic and adrenergic receptors may be located on separate cells. At concentrations that saturate their respective receptors, epinephrine induces an increase in inositol monophosphate that is linear with time to at least 60 min, whereas the response to carbachol begins to reach a plateau by 20-40 min. When hippocampal slices are preincubated with saturating concentrations of carbachol, the subsequent response to carbachol is reduced by 42%. However, preincubation with carbachol or epinephrine has no effect on the subsequent response to epinephrine. Despite the lack of adrenergic desensitization by this paradigm, preexposure of hippocampal slices to the tumor-promoting phorbol ester, phorbol 12,13-dibutyrate, reduces the response to epinephrine to a significantly greater degree (57%) than it reduces the muscarinic response (25%). These studies indicate that, although they utilize the same second messenger, the muscarinic and alpha 1-adrenergic receptors of hippocampal slices have different characteristics and regulatory mechanisms.  相似文献   

17.
Phosphorylation of the astrocyte cell marker glial fibrillary acidic protein (GFAP) in hippocampal slices from immature rats (10–16 days postnatal) was strongly stimulated by glutamate in the presence of Ca2+. This effect apparently occurred via a metabotropic receptor since the specific agonist of metabotropic glutamate receptors, 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), stimulated GFAP phosphorylation by 173% whilst the mixed agonists, ibotenate and quisqualate, stimulated to a lesser extent. Ionotropic agonists were mainly ineffective. The action of 1S,3R-ACPD was blocked by (+)-2-amino-3-phosphonopropionic acid ( -AP3) a specific antagonist of the metabotropic glutamate receptor coupled to the hydrolysis of phosphoinositides and was reduced by 70% by preincubation of the slices with pertussis toxin. In contrast to these results with immature animals glutamate had little or no effect on the phosphorylation of GFAP in hippocampal slices from adult rats.  相似文献   

18.
We have previously demonstrated that 5-HT1A receptor agonists partially prevent the stimulation by carbachol of [3H]-phosphoinositide hydrolysis in immature rat hippocampal slices. This negative modulation has been investigated further by measuring, using a radioreceptor assay, the mass accumulation of IP3. In hippocampal slices from developing rats and in hippocampal neurons, carbachol enhanced the accumulation of IP3 and this response was partially inhibited by 8-OH-DPAT with a potency compatible with the affinity of this agonist for 5-HT1A receptors. The inhibition of the carbachol response by 8-OH-DPAT was non-competitive in nature and 8-OH-DPAT did not affect the inhibitory potency of pirenzepine. The inhibitory effect of 8-OH-DPAT was maintained after washing the slices preincubated with this compound but was not observed on the carbachol-stimulated PIP2 hydrolysis in hippocampal membranes, suggesting that this compound induces long lasting changes of nuscarinic receptors and/or their effector mechanism by an indirect action.  相似文献   

19.
In cerebellar slices, the lowering of oxygen availability, obtained by bubbling N(2) in the medium, reduced the incorporation of radioactive serine into phosphatidylserine (PtdSer). CPCCOEt, an antagonist of metabotropic glutamate receptors type 1 (mGluR1) counteracted the effect, whereas antagonists of NMDA or AMPA receptors were ineffective. In oxygenated slices, agonists of Group I mGluRs, which include mGluR1, inhibited PtdSer synthesis. This effect was also counteracted by CPCCOEt. These findings indicate that glutamate inhibits PtdSer synthesis by acting on mGluR1. This could be important in relation to the known release of glutamate in hypoxia-ischaemia conditions. In cerebellar Purkinje cells, mGluR1 are involved in the generation of mGluR-EPSP evoked by parallel fibre stimulation. The administration of l-serine to cerebellar slices reduced in a dose-dependent manner the mGluR-EPSP evoked by parallel fibre stimulation. The effect was mostly due to the increased synthesis of PtdSer. Thus inhibition of PtdSer synthesis, mediated by mGluR1, may participate in the generation of mGluR-EPSP.  相似文献   

20.
Metabotropic excitatory amino acid (EAA) receptors are coupled to effector systems through G proteins. Because various G protein-coupled receptors stimulate the hydrolysis of phosphatidylcholine by phospholipase D (PLD), we examined the possibility that metabotropic EAA receptors exist that are coupled to the activation of PLD. We found that the selective metabotropic glutamate receptor (mGluR) agonists 1S,3R-amino-1,3-cyclopentanedicarboxylic acid (ACPD) and 1S,3S-ACPD, but not the inactive isomer, 1R,3S-ACPD, induce a concentration-dependent increase in PLD activity in hippocampal slices. Selective ionotropic glutamate receptor (iGluR) antagonists did not block 1S,3R-ACPD-induced PLD stimulation. Furthermore, although selective iGluR agonists did not activate this response, the nonselective mGluR-iGluR agonists, ibotenate and quisqualate, caused significant increases in PLD activity (all in the presence of iGluR antagonists). L-2-Amino-3-phosphonopropionic acid, which blocks the mGluR that is coupled to phosphoinositide hydrolysis in various brain regions, activates PLD to the same extent as the active isomers of ACPD. These data suggest that metabotropic EAA receptors exist in hippocampus that are coupled to PLD activation and are pharmacologically distinct from phosphoinositide hydrolysis-coupled mGluRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号