首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the effects of ischemia-reperfusion have received considerable attention, few studies have directly evaluated the microcirculatory response to systemic hypoxia. The overall objective of this study was to assess the effect of environmental hypoxia on adhesive interactions of circulating leukocytes with rat mesenteric venules by using intravital microscopy. Experiments were designed to 1) characterize the adhesive interactions of circulating leukocytes to venules during acute hypoxia produced by a reduction in inspired PO(2), 2) evaluate the role of nitric oxide in these adhesive interactions, 3) determine whether the effect of hypoxia on leukocyte adhesive interactions differs between acclimatized and nonacclimatized rats, and 4) assess whether compensatory changes in nitric oxide formation contribute to this difference. The results showed that acute hypoxia promotes leukocyte-endothelial adherence in mesenteric venules of nonacclimatized rats. The mechanism of this response is consistent with depletion of nitric oxide within the microcirculation. In contrast, no leukocyte-endothelial adherence occurred during hypoxia in rats acclimatized to hypobaric hypoxia. The results are consistent with increased nitric oxide formation due to expression of inducible nitric oxide synthase during the acclimatization period. Further studies are needed to establish the cause of nitric oxide depletion during acute hypoxia as well as to define the compensatory responses that attenuate hypoxia-induced leukocyte-endothelial adherence in the microvasculature of acclimatized rats.  相似文献   

2.
Nitric oxide (NO) can induce apoptosis in a variety of cell types. A non-toxic concentration of nitric oxide under normal oxygen conditions triggered cell death under hypoxic conditions (1.5% O(2)) in fibroblasts. Nitric oxide administered during hypoxia induced the release of cytochrome c, caspase-9 activation, and the loss of mitochondrial membrane potential followed by DNA fragmentation and lactate dehydrogenase release (markers of cell death). Bcl-X(L) protected cells from nitric oxide-induced apoptosis during hypoxia by preventing the release of cytochrome c, caspase-9 activation, and by maintaining a mitochondrial membrane potential. Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice exposed to nitric oxide during hypoxia did not die, indicating that pro-apoptotic Bcl-2 family members are required for NO-induced apoptosis during hypoxia. The nitric oxide-induced cell death during hypoxia was independent of cGMP and peroxynitrite. Cells devoid of mitochondrial DNA (rho secondary-cells) lack a functional electron transport chain and were resistant to nitric oxide-induced cell death during hypoxia, suggesting that a functional electron transport chain is required for nitric oxide-induced apoptosis during hypoxia.  相似文献   

3.
Oxygen plays a key role in energy metabolism. However, there are organisms that survive severe shortfalls in oxygen. Drosophila embryos rapidly arrest development upon severe hypoxia and recover upon restoration of oxygen, even days later. Stabilization of the normally unstable engrailed RNA and protein preserved the localized striped pattern of this embryonic patterning gene during 3 days in hypoxia. Severe hypoxia blocked expression of a heat-shock-inducible lacZ transgene. Cyanide, a metabolic poison, did not immediately block gene expression or turnover, arguing against a passive response to energy limitation. In contrast, nitric oxide, a putative hypoxia signal, induced a reversible arrest of development, gene expression and turnover. Reciprocally, a nitric oxide scavenger allowed continued gene expression and turnover during hypoxia, but it reduced hypoxia tolerance. We suggest that hypoxia-induced stasis preserves the status quo of embryonic processes and promotes survival. Our data implicate nitric oxide as a mediator of this response and provide a system in which to investigate its action.  相似文献   

4.
Hypoxia induces barrier dysfunctions in endothelial cells. Nitric oxide is an autacoid signalling molecule that confers protection against hypoxia‐mediated barrier dysfunctions. Dyn‐2 (dynamin‐2), a large GTPase and a positive modulator of eNOS (endothelial nitric oxide synthase), plays an important role in maintaining vascular homeostasis. The present study aims to elucidate the role of dyn‐2 in hypoxia‐mediated leakiness of the endothelial monolayer in relation to redox milieu. Inhibition of dyn‐2 by transfecting the cells with K44A, a dominant negative construct of dyn‐2, elevated leakiness of the endothelial monolayer under hypoxia. Sodium nitroprusside (nitric oxide donor) and uric acid (peroxynitrite quencher) were used to evaluate the role of nitric oxide and peroxynitrite in maintaining endothelial barrier functions under hypoxia. Administration of nitric oxide and uric acid recovered hypoxia‐mediated leakiness of K44A‐overexpressed endothelial monolayer. Our study confirms that inhibition of dyn‐2 induces leakiness in the endothelial monolayer by increasing the load of peroxynitrite under hypoxia.  相似文献   

5.
In this work, we demonstrate that endothelial nitric oxide synthase is capable of anoxic reduction of nitrite anions to nitric oxide at physiological pH by absorption and EPR spectroscopy and electrochemical measurements. The nitrite reduction is achieved at the oxygenase domain of the protein and proceeds even in the absence of the tetrahydrobiopterin cofactor. The nitrite pathway increases by sixfold the NO production with respect to the regular arginine pathway under hypoxia, which is largely blocked. Therefore, basal levels of NO release could be sustained by anoxic nitrite reduction. The reaction suggests a new pathway for fast NO delivery under hypoxia, precisely when the vasodilating properties of nitric oxide are most needed.  相似文献   

6.
7.
Cytoskeletal regulation of nitric oxide synthase   总被引:7,自引:0,他引:7  
  相似文献   

8.
Cortical nitric oxide (NO) production increases during hypoxia/ischemia in the immature brain and is associated with both neurotoxicity and mitochondrial dysfunction. Mitochondrial redistribution within the cell is critical to normal neuronal function, however, the effects of hypoxia on mitochondrial dynamics are not known. This study tested the hypothesis that hypoxia impairs mitochondrial movement via NO-mediated pathways. Fluorescently labeled mitochondria were studied using time-lapse digital video microscopy in cultured cortical neurons exposed either to hypoxia/re-oxygenation or to diethyleneamine/nitric oxide adduct, DETA-NO (100-500 microm). Two NO synthase inhibitors, were used to determine NO specificity. Mitochondrial mean velocity, the percentage of movement (i.e. the time spent moving) and mitochondrial morphology were analyzed. Exposure to hypoxia reduced mitochondrial movement to 10.4 +/- 1.3% at 0 h and 7.4 +/- 1.7% at 1 h of re-oxygenation, versus 25.6 +/- 1.4% in controls (p < 0.05). Mean mitochondrial velocity (microm s(-1)) decreased from 0.374 +/- 0.01 in controls to 0.146 +/- 0.01 at 0 h and 0.177 +/- 0.02 at 1 h of re-oxygenation (p < 0.001). Exposure to DETA-NO resulted in a significant decrease in mean mitochondrial velocity at all tested time points. Treatment with NG-nitro-L-arginine methyl ester (L-NAME) prevented the hypoxia-induced decrease in mitochondrial movement at 0 h (30.1 +/- 1.6%) and at 1 h (26.1 +/- 9%) of re-oxygenation. Exposure to either hypoxia/re-oxygenation or NO also resulted in the rapid decrease in mitochondrial size. Both hypoxia and NO exposure result in impaired mitochondrial movement and morphology in cultured cortical neurons. As the effect of hypoxia on mitochondrial movement and morphology can be partially prevented by a nitric oxide synthase (NOS) inhibitor, these data suggest that an NO-mediated pathway is at least partially involved.  相似文献   

9.
Ischemia–reperfusion leads to increased levels at the blood–brain barrier of the multidrug efflux transporter, P-glycoprotein that provides protection to the brain by limiting access of unwanted substances. This is coincident with the production of nitric oxide. This present study using immortalized rat brain endothelial cells (GPNTs) examines whether following hypoxia-reoxygenation, nitric oxide contributes to the alterations in P-glycoprotein levels. After 6 h of hypoxia, both nitric oxide and reactive oxygen species, detected intracellularly using fluorescent monitoring dyes, were produced in the subsequent reoxygenation phase coincident with increased P-glycoprotein. The evidence that nitric oxide can directly affect P-glycoprotein expression was sought by applying S-nitroso-N-acetyl-dl-penicillamine that as shown increased the nitric oxide generation. Sodium nitroprusside, though more effective at increasing P-glycoprotein expression, appeared to produce different reactive species. Real time RT-PCR analysis revealed the predominant form of nitric oxide synthase in these cells to be endothelial, inhibition of which partially prevented the increase in P-glycoprotein during reoxygenation. These data indicate that the production of nitric oxide by endothelial nitric oxide synthase during reoxygenation can influence P-glycoprotein expression in cells of the blood-rat brain barrier, highlighting another route by which nitric oxide may protect the brain.  相似文献   

10.
Leakiness of the endothelial bed is attributed to the over-perfusion of the pulmonary bed, which leads to high altitude pulmonary edema (HAPE). Inhalation of nitric oxide has been successfully employed to treat HAPE patients. We hypothesize that nitric oxide intervenes in the permeability of the pulmonary macrovascular endothelial bed to rectify the leaky bed under hypoxia. Our present work explores the underlying mechanism of 'hypoxia-mediated' endothelial malfunction by using human umbilical cord-derived immortalized endothelial cells, ECV-304, and bovine pulmonary artery primary endothelial cells. The leakiness of the endothelial monolayer was increased by two-fold under hypoxia in comparison to cells under normoxia, while optical tweezers-based tethering assays reported a higher membrane tension of endothelial cells under hypoxia. Phalloidin staining demonstrated depolymerization of F-actin stress fibers and highly polarized F-actin patterns in endothelial cells under hypoxia. Nitric oxide, 8-Br-cGMP and sildenafil citrate (phosphodiesterase type 5 inhibitor) led to recovery from hypoxia-induced leakiness of the endothelial monolayers. Results of the present study also suggest that 'hypoxia-induced' cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability under hypoxia. We conclude that nitric oxide-based recovery of hypoxia-induced leakiness of endothelial cells is a cyclic guanosine monophosphate (cGMP)-dependent phenomenon.  相似文献   

11.
In experiments on Wistar rats processes nitric oxide production on concentration of anions (NO2-, NO3-), carbamide and polyamines contents were investigated in processes of rats adaptation to acute hypoxia (7% O2 in N2, 30 min) and intermittent hypoxia training (10% O2 in N2, 15 min, 5 cycles daily) during 14 days. NO production by oxygen-dependent and oxygen-independent metabolites paths has been investigated. It is concluded that the disturbances in nitric oxide system induced by acute hypoxia by L-arginine injections may result in acute hypoxia.  相似文献   

12.
We tested the hypotheses that pregnancy increases the uterine artery (UA) vasodilator response to flow and that this increase is impaired under conditions of chronic hypoxia (30 days, simulated elevation 3,960 m). UA were isolated from 24 normoxic or chronically hypoxic midpregnant guinea pigs and studied with the use of pressure myography. Normoxic pregnancy increased UA flow vasodilator response and protected against a rise in wall shear stress (WSS). Chronic hypoxia opposed these effects, prompting vasoconstriction at high flow and increasing WSS above levels seen in normoxic pregnant UA. The nitric oxide synthase inhibitor N(G)-nitro-l-arginine (l-NNA) eliminated the pregnancy-associated increase in flow vasodilation in normoxic UA, suggesting that increased nitric oxide production was responsible. The considerable residual vasodilation after nitric oxide synthase and cyclooxygenase inhibition implicated endothelial-derived hyperpolarizing factor (EDHF) as an additional contributor to flow vasodilation. l-NNA increased flow vasodilation in UA from chronically hypoxic animals, suggesting that chronic hypoxia may have lowered EDHF or elevated peroxynitrite production. In conclusion, flow is an important physiological vasodilator for the acute and more chronic UA dimensional changes required to increase uteroplacental blood flow during normal pregnancy. Chronic hypoxia may be a mechanism that opposes the pregnancy-associated rise in UA flow vasodilation, thereby increasing the incidence of preeclampsia and intrauterine growth restriction at a high altitude.  相似文献   

13.
Tumor hypoxia is associated with a poor prognosis for patients with various cancers, often resulting in an increase in metastasis. Moreover, exposure to hypoxia increases the ability of breast carcinoma cells to invade the extracellular matrix, an important aspect of metastasis. Here, we demonstrate that the hypoxic up-regulation of invasiveness is linked to reduced nitric oxide signaling. Incubation of human breast carcinoma cells in 0.5% versus 20% oxygen increased their in vitro invasiveness and their expression of the urokinase receptor, an invasion-associated molecule. These effects of hypoxia were inhibited by nitric oxide-mimetic drugs; and in a manner similar to hypoxia, pharmacological inhibition of nitric oxide synthesis increased urokinase receptor expression. The nitric oxide signaling pathway involves activation of soluble guanylyl cyclase (sGC) and the subsequent activation of protein kinase G (PKG). Culture of tumor cells under hypoxic conditions (0.5% versus 20% oxygen) resulted in lower cGMP levels, an effect that could be prevented by incubation with glyceryl trinitrate. Inhibition of sGC activity with a selective blocker or with the heme biosynthesis inhibitor desferrioxamine increased urokinase receptor expression. These compounds also prevented the glyceryl trinitrate-mediated suppression of urokinase receptor expression in cells incubated under hypoxic conditions. In contrast, direct activation of PKG using 8-bromo-cGMP prevented the hypoxia- and desferrioxamine-induced increases in urokinase receptor expression as well as the hypoxia-mediated enhanced invasiveness. Further involvement of PKG in the regulation of invasion-associated phenotypes was established using a selective PKG inhibitor, which alone increased urokinase receptor expression. These findings reveal that an important mechanism by which hypoxia increases tumor cell invasiveness (and possibly metastasis) requires inhibition of the nitric oxide signaling pathway involving sGC and PKG activation.  相似文献   

14.
Myoglobin is presumably the most studied protein in biology. Its functional properties as a dioxygen storage and facilitator of dioxygen transport are widely acknowledged. Experimental evidence also implicates an essential role for myoglobin in the heart in regulating nitric oxide homeostasis. Under normoxia, oxygenated myoglobin can scavenge excessive nitric oxide, while under hypoxia, deoxygenated myoglobin can reduce nitrite, an oxidative product of nitric oxide, to bioactive nitric oxide. Myoglobin-driven nitrite reduction can protect the heart from ischemia and reperfusion injury. While horse and mouse myoglobin have been previously described to reduce nitrite under these conditions, a comparable activity has not been detected in human myoglobin. We here show that human myoglobin is a fully functional nitrite reductase. To study the role of human myoglobin for nitric oxide homeostasis we used repeated photometric wavelength scans and chemiluminescence based experiments. The results revealed that oxygenated human myoglobin reacts with nitrite-derived nitric oxide to form ferric myoglobin and that deoxygenated human myoglobin acts as a nitrite reductase in vitro and in situ. Rates of both nitric oxide scavenging and nitrite reduction were significantly higher in human compared to horse myoglobin. These data extend the existing knowledge about the functional properties of human myoglobin and are the basis for further translational studies towards the importance of myoglobin for nitric oxide metabolism in humans.  相似文献   

15.
一氧化氮对脑血流的调节   总被引:14,自引:0,他引:14  
一氧化氮是近年来发现的一种重要的血管活性因子,它通过激活平滑肌细胞内水溶性鸟苷酸环化酶,而产生血管舒张作用,在正常生理条件下,NO不仅对外因管有作用,对脑血管也有作用,但关于它在低氧和高二氧化碳条件下脑血管是否具有调节作用还存在着争议。  相似文献   

16.
Cells can respond to reductions in oxygen (hypoxia) by metabolic adaptations, quiescence or cell death. The nuclear division cycles of syncytial stage Drosophila melanogaster embryos reversibly arrest upon hypoxia. We examined this rapid arrest in real time using a fusion of green fluorescent protein and histone 2A. In addition to an interphase arrest, mitosis was specifically blocked in metaphase, much like a checkpoint arrest. Nitric oxide, recently proposed as a hypoxia signal in Drosophila, induced a reversible arrest of the nuclear divisions comparable with that induced by hypoxia. Syncytial stage embryos die during prolonged hypoxia, whereas post-gastrulation embryos (cellularized) survive. We examined ATP levels and morphology of syncytial and cellularized embryos arrested by hypoxia, nitric oxide, or cyanide. Upon oxygen deprivation, the ATP levels declined only slightly in cellularized embryos and more substantially in syncytial embryos. Reversal of hypoxia restored ATP levels and relieved the cell cycle and developmental arrests. However, morphological abnormalities suggested that syncytial embryos suffered irreversible disruption of developmental programs. Our results suggest that nitric oxide plays a role in the response of the syncytial embryo to hypoxia but that it is not the sole mediator of these responses.  相似文献   

17.
In order to investigate the potential neuroprotective role played by glucose metabolism during brain oxygen deprivation, the susceptibility of cultured neurones and astrocytes to 1 h of oxygen deprivation (hypoxia) or oxygen and glucose deprivation (OGD) was examined. OGD, but not hypoxia, promotes dihydrorhodamine 123 and glutathione oxidation in neurones but not in astrocytes reflecting free radical generation in the former cells. A specific loss of mitochondrial complex-I activity, mitochondrial membrane potential collapse, ATP depletion and necrosis occurred in the OGD neurones, but not in the OGD astrocytes. Furthermore, superoxide anion but not nitric oxide formation was responsible for these effects. OGD decreased neuronal but not astrocytic NADPH concentrations; this was not observed in hypoxia and was independent of superoxide or nitric oxide formation. These results suggest that glucose metabolism would supply NADPH, through the pentose-phosphate pathway, aimed at preventing oxidative stress, mitochondrial damage and neurotoxicity during oxygen deprivation to neural cells.  相似文献   

18.
红花黄色素对新生鼠缺氧后一氧化氮合酶表达的影响   总被引:3,自引:0,他引:3  
目的:观察红花黄色素对缺氧后脑内诱生型一氧化氮合酶(iNOS)、神经原型一氧化氮合酶(nNOS)及内皮型一氧化氮合酶(eNOS)基因表达的影响,探讨红花黄色素抗缺氧脑损伤的作用.方法:采用SD新生鼠缺氧模型,于缺氧前30 min腹腔注射红花黄色素生药7g/kg,缺氧40 min后复氧48 h,提取脑组织总RNA,应用RT-PCR技术检测三种NOS mRNA的表达量.结果:新生鼠缺氧再复氧48 h,脑内iNOS、nNOS基因表达上升(P<0.05),预先给予红花黄色素能抑制iNOS、nNOS基因的表达(P<0.05),但eNOS基因表达不受影响.结论:红花黄色素对缺氧脑损伤的保护作用与NOS基因表达有关.  相似文献   

19.
The recent review summarizes the major achievements in discovery of role of phytoglobins in mediation of nitric oxide generated cellular functions in higher plants. Genes encoding non-symbiotic hemoglobins have been cloned from several plant species. The expression pattern of these genes show tissue-specificity that is also under the control of stress factors like hypoxia. The nitric oxide has pivotal role in signalling pathway specifically in hypersensitive reactions and programmed cell death. Production of transgenic tobacco plants overexpressing the alfalfa hemoglobin showed altered necrotic symptoms after treatment with nitric oxide generating compounds or infection by necrotic pathogens. The present review helps to outline the similar relation between hemoglobin and nitric oxide in plants as it was found in animal cells.  相似文献   

20.
Shortage of endothelial nitric oxide (NO) manifested as decreased daily urinary excretion of nitrate and nitrite as well as attenuated endothelium-dependent relaxation of conduit and resistance vessels progresses with age-related increase of blood pressure (BP) in stroke-prone spontaneously hypertensive rats (SHRSP). Simultaneous NO-dependent suppression of vascular contractions is, apparently, due to the inducible NO synthase activity in vascular smooth muscle specific for spontaneously hypertensive rat. The adaptation of rats to hypobaric hypoxia initiated at early hypertensive stage (at the age of 5–6 weeks) decelerates hypertension progress. The antihypertensive effect of the adaptation was accompanied by stimulation of endothelial NO synthesis and prevention of impaired NO-dependent response in isolated blood vessels. Nitric oxide stores were formed in the vascular wall of SHRSP and WKY rats at the same time. The obtained data indicate that the correction of endothelial NO deficiency plays a significant role in the antihypertensive effect of adaptation to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号