首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida utilis was grown on acetate in chemostat cultures that were, successively, carbon and ammonia-limited (30° C; pH 5.5). With carbon(acetate)-limited cultures, the specific rate of oxygen consumption (q O 2) was not a linear function of the growth rate but was markedly stimulated at the higher dilution rates, thus effecting a marked decrease in the Y O value. This increased respiration rate, and decreased yield value, correlated closely with a marked increase in the extracellular acetate concentration. Under ammonia-limiting conditions, very low Y O values were found, generally comparable with those found with carbon-limited cultures growing at the higher dilution rates, but these varied markedly with the extracellular acetate concentration. Thus, when the unused acetate concentration was raised progressively from about 5 g/l to about 21 g/l, the Y O value decreased non-linearly from 11.4 to 5.8. When the extracellular acetate concentration was further increased to 25 g/l, growth was inhibited and the culture washed out. This relationship between respiration rate and the extracellular concentration of unused acetate was also markedly influenced by the culture pH value. Thus, with a fixed extracellular acetate concentration (16±2g/l) and dilution rate (0.14 h–1), lowering the culture pH value progressively from 6.9 to 5.1 effected a marked and progressive increase in the respiration rate. Further lowering of the culture pH to 4.8, however, caused a complete collapse of respiration. In contrast to this situation, progressively lowering the pH value of an acetatelimited culture from 6.9 to 4.5 affected only slightly the culture respiration rate, and growth was possible even at a pH value of 2.5. These results are discussed in the context of the possible mechanisms whereby acetate exerts its toxic effect on the growth of C. utilis.  相似文献   

2.
Summary The effect of CO2 removal by continuous sparging of N2 in batch cultures ofZymomonas mobilis (ATCC10988) was examined. N2 sparging considerably reduces lag times in batch cultures, possibly because of continuous removal of CO2 from the culture media. Ventilation of CO2 from culture media results in an increase of about 15% in the average specific growth rate and about 12% in the cell-mass yield with no noticeable trend in the average specific glucose uptake and ethanol production rates. The overall ethanol yield on glucose, however, decreases slightly by 5%. Analysis of ventilated experiments show that the CO2 production is directly coupled with the ethanol formation but not necessarily with the cell-mass production, indicating a decoupling of growth from ethanol production. Further, comparison of ventilated and non-ventilated experiments rules out the possibility of CO2 accumulation in the culture media as a factor responsible for increasing growth inhibition and decoupling of growth from ethanol fermentation at increasing initial glucose concentrations in batch cultures.  相似文献   

3.
Methanosarcina barkeri was grown by acetate fermentation in complex medium (N2 gas phase). The molar growth yield was 1.6–1.9 g cells/mol methane formed. Under these conditions 63–82% of the methane produced byMethanosarcina strains was derived from the methyl carbon of acetate, indicating that some methane was derived from other media components. Growth was not demonstrated in complex media lacking acetate or mineral acetate medium containing acetate but lacking H2/CO2, methanol, or trypticase and yeast extract. Acetate metabolism byM. barkeri strain MS was further exmined in mineral acetate medium containing H2/CO2 and/or methanol, but lacking cysteine. Under these conditions, more methane was derived from the methyl carbon of acetate than from the carboxyl carbon. Methanogenesis from the methyl group increased with increasing acetate concentration. The methyl carbon contributed up to 42% of the methane formed with H2/CO2 and up to 5% with methanol. Methanol stimulated the oxidation of the methyl group of acetate to CO2. The average rates of methane formation from acetate were 1.3 nomol/min ·ml/culture (0.04mg2 cell dry weight) in defined media (gas phase H2/CO2) and complex media (gas phase N2). Acetate contributed up to 60% of cell carbon formed under the growth conditions examined. Similar quantities of cell carbon were derived from the methyl and carboxyl carbons of acetate, suggesting incorporation of this compound as a two-carbon unit. Incorporated acetate was not preferentially localized in lipid material, as 70% of the incorporated acetate was found in the wall and protein cell fractions. Acetate catabolism was stimulated by pregrowing of cultures in media containing acetate, while acetate anabolism was not influenced. The results are discussed in terms of the differences between the mechanisms of acetate catabolism and anabolism.Abbreviations CH3-S-CoM methyl coenzyme M - TCA trichloroacetic acid - CoM coenzyme M (2-mercaptoethane sulfonic acid) - Eo standard potential change (pH 7) - F420 Factor 420, a low redox electron carrier - Go standard free energy change (pH 7) - kJ kilojoules (=0.24 kilocalories) - PBBW Weimer's phosphate-buffered basal medium - X unknown C1 carrier  相似文献   

4.
Algal biomass refineries for sustainable transportation fuels, in particular biodiesel, will benefit from algal strain enhancements to improve biomass and lipid productivity. Specifically, the supply of inorganic carbon to microalgal cultures represents an area of great interest due to the potential for improved growth of microalgae and the possibility for incorporation with CO2 mitigation processes. Combinations of bicarbonate (HCO3?) salt addition and application of CO2 to control pH have shown compelling increases in growth rate and lipid productivity of fresh water algae. Here, focus was placed on the marine organism, Nannochloropsis gaditana, to investigate growth and lipid accumulation under various strategies of enhanced inorganic carbon supply. Three gas application strategies were investigated: continuous sparging of atmospheric air, continuous sparging of 5% CO2 during light hours until nitrogen depletion, and continuous sparging of atmospheric air supplemented with 5% CO2 for pH control between 8.0 and 8.3. These gas sparging schemes were combined with addition of low concentrations (5 mM) of sodium bicarbonate at inoculation and high concentration (50 mM) of sodium bicarbonate amendments just prior to nitrogen depletion. The optimum scenario observed for growth of N. gaditana under these inorganic carbon conditions was controlling pH with 5% CO2 on demand, which increased both growth rate and lipid accumulation. Fatty acid methyl esters were primarily comprised of C16:0 (palmitic) and C16:1 (palmitoleic) aliphatic chains. Additionally, the use of high concentration (50 mM) of bicarbonate amendments further improved lipid content (up to 48.6%) under nitrogen deplete conditions when paired with pH-controlled strategies.  相似文献   

5.
Progressively increasing the input concentration of growth-limiting nutrient (glucose, ammonia, K+) to anaerobic chemostat cultures ofKlebsiella aerogenes (D=0.38 h−1; 35°C; pH 6.8) led to a non-linear increase in bacterial cell concentration. At modest population densities, residual growth-limiting substrate levels increased substantially, with increasing input concentration, and the culture bacterial dry weight tended to a constant value. With the glucose-limited culture, increasing the glucose input concentration above 20 g·1−1 led to accumulation of unused glucose and a change in the fermentation pattern. There was a concomitant lowering of the yield value with respect to glucose consumption, and the calculated YATP value similarly declined. Addition of extra essential (non-limiting) nutrients to the culture was without effect. Similarly, addition of individual fermentation products (acetate, ethanol,d-lactate, 2,3-butanediol, succinate) to the feed medium, in varying concentrations and in different combinations, failed to influence the fermentation pattern or the energetics of cell synthesis. However, a clear correlation was observed between the yield values (of both glucose- and K+-limited cultures) and the steady state concentration of CO2 in the effluent gas. Increasing the concentration CO2 either by increasing the population density or lowering the sparging rate of nitrogen gas through the culture, effected a lowering of the yield values. It is suggested that dissolved CO2 exerts an effect on both metabolism and the energetics of cell synthesis. A possible mechanism of energy dissipation (i.e., a futile cycle) involving carboxylation and decarboxylation reactions is proposed.  相似文献   

6.
Desulfotomaculum orientis (strain Singapore 1) was grown autotrophically with H2+CO2 and sulfate, thiosulfate or sulfite as electron acceptor in sulfide- and pH-controlled continuous culture. Under sulfate-limiting conditions real growth yields of up to 9.7 g cell dry mass per mol sulfate were obtained. Electron acceptor limitation resulted in the excretion of up to 14.5 mmol acetate per liter, formed by reduction of CO2 with H2. Acetate production was not coupled to an increase of growth yields: under hydrogen-limiting conditions only 1.6 mmol acetate per liter was produced, and even higher growth yields of up to 12,4 g cell dry mass per mol sulfate were obtained. With thiosulfate or sulfite as electron acceptor growth yields increased up to 17.9 g cell dry mass per mol electron acceptor. Growth yields were not simply correlated with the growth rate, and did not allow the determination of maintenance coefficients and the extrapolation to maximal yields at infinite growth rate (Y max). The maximal growth rates (max) with sulfate and thiosulfate were 0.090 and 0.109 h-1, respectively, if cells were grown continuously in sulfidostat culture under nonlimiting conditions.The net energy yield of sulfate reduction and the energy requirement for the activation of sulfate by Desulfotomaculum orientis are discussed.  相似文献   

7.
Succinic acid production from the monosaccharides xylose, arabinose, glucose, mannose and galactose was studied using the bacterium Actinobacillus succinogenes. In Duran bottle cultures, containing 10 g/L of each of sugar, succinic acid was produced from all sugars except for galactose. The highest succinate yield, 0.56 g/g, was obtained with glucose, whereas the succinate yield was 0.42, 0.38 and 0.44 g/g for xylose, mannose and arabinose, respectively. The specific succinate productivity was 0.7 g/g h for glucose, but below 0.2 g/g h for the other sugars. Batch bioreactor fermentations were carried out using a sugar mixture of the five sugars giving a total concentration of 50 g/L, mimicking the distribution of sugars in spent sulfite liquor (SSL) from Eucalyptus which is rich in xylose. In this mixture, an almost complete conversion of all sugars (except galactose) was achieved resulting in a final succinate concentration of 21.8–26.8 g/L and a total yield of 0.59–0.68 g/g. There was evidence of co-consumption of glucose and xylose, whereas mannose was consumed after glucose. The main by-products were acetate 0.14–0.20 g/g and formate 0.08–0.13 g/g. NADH balance calculations suggested that NADH required for succinate production was not met solely from formate and acetate production, but other means of NADH production was necessary. Results from mixed sugar fermentations were verified using SSL as substrate resulting in a succinate yield of 0.60 g/g. In addition, it was found that CO2 sparging could replace carbonate supply in the form of MgCO3 without affecting the succinate yield.  相似文献   

8.
Summary The formation of acetic acid by the thermophilic nonsporeforming homoacetogenic bacterium Acetogenium kivui was studied under various conditions. In pH-controlled batch fermentation at pH 6.4 this bacterium was able to produce up to 625 mM of acetic acid from glucose within 50–60 h. The value of max obtained was about 0.17 h-1, the yield was about 2.55 mol of acetic acid per mol of glucose utilized. In continuous fermentation both substrate concentration and dilution rate (D) influenced the yield of acetate and the stationary concentration: a glucose concentration of 67 mM at D=0.09 h-1 resulted in 2.82 mol acetate/mol glucose and 190 mM acetate at a production rate of 17.1 mM/1 h. When the dilution rate was increased the production rate reached a maximal value of 43.2 mM/1 h at D=0.32 h-1. At a glucose concentration of 195 mM the dependence of yield upon dilution rate followed a similar pattern and an acetate concentration of 420 mM could be obtained. Enzymatic studies indicate that in A. kivui pyruvate ferredoxin-oxidoreductase and acetate kinase are inhibited at acetate concentrations higher than 800 mM. Based on these results a fed-batch fermentation was developed, which allowed to produce more than 700 mM acetic acid within 40–50 h.Dedicated to Prof. Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

9.
The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74±0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27±0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions leading to changes in the Y glucose and Y ATP values. In general, glucose-sufficient cultures expressed lower yield values than a correponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40g glucose·l-1 also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased.Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of mannitol to a glucose-limited culture. In both cases, however, there was no apparent change in the Y ATP value.These results are discussed with respect to two imponder-ables, namely the mechanism(s) by which C. butyricum might partially or totally dissociate catabolism from anabolism, and how it might dispose of the excess reductant [as NAD(P)H] that attends both the formation of acetate from glucose and the fermentation of mannitol. With regards to the latter, evidence is presented that supports the conclusion that the ferredoxin-mediated oxidation of NAD(P)H, generating H2, is neither coupled to, nor driven by, an energy-yielding reaction.  相似文献   

10.
pH control is critical in bioreactor operations, typically realized through a two-sided control loop, where CO2 sparging and base addition are used in bicarbonate-buffered media. Though a common approach, base addition could compromise culture performance due to the potential impact from pH excursions and osmolality increase in large-scale bioreactors. In this study, the feasibility of utilizing control of sparge gas composition as part of the pH control loop was assessed in Chinese hamster ovary (CHO) fed-batch cultures. Fine pH control was evaluated in multiple processes at different setpoints in small-scale ambr®250 bioreactors. Desired culture pH setpoints were successfully maintained via air sparge feedback control. As part of the pH control loop, air sparging was increased to improve CO2 removal automatically, hence increase culture pH, and vice versa. The effectiveness of this pH control strategy was seamlessly transferred from ambr®250 to 200 L scale, demonstrating scalability of the proposed methodology. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2743, 2019  相似文献   

11.
Summary The effects of pCO2 and pCH4 in the interval 0–1 bar on rates of acetate degradation and methane formation by methanogens as well as methane yields were studied in enrichment cultures in batch and continuous fermentations.In batch fermentations the rate of acetate utilization by methanogens was 1,000–1,500 mg/l · d at low levels of pCO2. CO2 was inhibitory and degradation rates were around 350 mg/l · d in 1 bar CO2. The degradation of acetate was almost linear. In continuous culture maximum rates of acetate utilization around 2,500 mg/l · d were obtained and the acetate concentration in the substrate was reduced by 98–99%.The yields of methane on acetate substrates were close to the theoretical value (1 mole CH4 per mole HAc) in the interval pCO2-0–0.5 bar. In 1 bar CO2 yields decreased by 20–30%.CH4 was found to be only slightly inhibitory; the inhibiting effects of 1 bar CH4 on acetate degradation rates were comparable to the effects of 0.3 bar CO2. Also gas sparging and rapid mixing had small effects compared with a non-sparged, slowly mixed culture.The redox potential was usually around –200 mV during fermentations and no connection was found between acetate degradation rate, Eh and pCO2.Acetate and propionate degradation were the reactions most sensitive to pCO2 and to obtain maximum rates as well as maximum methane yields pCO2-levels around 0.2 bar were found to be optimal.  相似文献   

12.
Phanerochœte chrysosporium strain H-298 grown on sugarcane bagasse pith, a lignocellulosic residue, is proposed as a bioremediation agent for aromatic contaminated soils. To investigate the use of pith for the development of a fungal inoculum, the effect of culture conditions on fungus survival and microbial respiration under solid fermentation were studied. Microbial respiration, estimated from the CO2 evolution rates, was maintained relatively high at low aeration conditions. High respiration occurred in cultures with 2,2-dimethylsuccinate added and without buffers, but not in those with acetate, succinate and phosphate buffers. It was observed that the culture was autobuffered at pH 4.5, due to acetic acid release, and that moisture content increased from 60 to 70%; these conditions were appropriate for fungal cultivation. CO2 evolution rates and fluorescence analysis showed that fungal survival was maintained through 18 d.  相似文献   

13.
A 3-liter culture vessel has been developed for the growth of animal cells in suspension at controlled pH and dissolved oxygen partial pressure (pO2). The culture technique allows metabolically produced CO2 to be measured; provision can be made to control the dissolved CO2 partial pressure. In cultures containing a low serum concentration, gas sparging to control pO2 was found to cause cell damage. This could be prevented by increasing the serum concentration to 10%, or by adding 0.02% of the surface-active polymer Pluronic F68. The growth of mouse LS cells in batch culture without pO2 control was found to be limited by the availability of oxygen. Maximum viable cell populations were obtained when dissolved pO2 was controlled at values within the range 40–100 mm Hg.  相似文献   

14.
Summary After elucidating the composition of an anaerobic bacterial enrichment culture treating sulphite evaporator condensate (SEC), an effluent in the pulp and paper industry, we built up stepwise a defined mixed culture to convert the organic constituents of SEC (acetate, methanol, furfural) to methane and CO2. In batch cultures Desulfovibrio furfuralis and Methanobacterium bryantii degraded furfural in the absence of sulphate via inter-species H2 transfer yielding 0.42 mol methane and 1.87 mol acetate/mol furfural degraded. When Methanosarcina barkeri was added to this diculture, acetate was also transformed to methane yielding 0.93 mol methane/mol acetate converted. This consortium (D. furfuralis, Methanobacterium bryantii and Methanosarcina barkeri) degraded furfural in continuous culture (fixed-bed loop reactor) to 92%, but the conversion of acetate was only 67%. The conversion of acetate could be further improved to 86% by adding 10 mm sulphate to the medium. This resulted in a space time yield of 10.9 g chemical oxygen demand (COD)/1 per day for the overall conversion. With a consortium consisting of M. barkeri, Methanobrevibacter arboriphilus, Methanosaeta concilii and D. furfuralis, a synthetic SEC could be degraded at a space time yield of 13.35 g COD/1 per day. This defined culture degraded all the constituents of SEC at an efficiency of almost 90% compared to an enrichment culture under identical conditions.Offprint requests to: U. Ney  相似文献   

15.
Maximum activity (8.9 IU/ml) of rifamycin oxidase in Curvularia lunata, grown in shake-flask culture at 28°C and pH 6.5, was after 96 h. Nearly all the glucose was used in 72 h. An initial culture pH of 6.5 and 28°C were optimum for the growth and enzyme production. Among various carbon and organic nitrogen sources, carboxymethylcellulose and peptone were the most effective for enzyme yield. The rate of enzyme production was enhanced when yeast extract was also added to the medium. The optimum medium for the production of rifamycin oxidase contained 10 g each of yeast extract, peptone and carboxymethylcellulose/l and 0.04% (NH4)2SO4.The author is with the Biochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Post Box 1304, Sector 39-A, Chandigarh 160 014, India  相似文献   

16.
Intrinsic growth and substrate uptake parameters were obtained for Peptostreptococcus productus, strain U-1, using carbon monoxide as the limiting substrate. A modified Monod model with substrate inhibition was used for modeling. In addition, a product yield of 0.25 mol acetate/mol CO and a cell yield of 0.034 g cells/g CO were obtained. While CO was found to be the primary substrate, P. productus is able to produce acetate from CO2 and H2, although this substrate could not sustain growth. Yeast extract was found to also be a growth substrate. A yield of 0.017 g cell/g yeast extract and a product yield of 0.14 g acetate/g yeast extract were obtained. In the presence of acetate, the maximum specific CO uptake rate was increased by 40% compared to the maximum without acetate present. Cell replication was inhibited at acetate concentrations of 30 g/l. Methionine was found to be an essential nutrient for growth and CO uptake by P. productus. A minimum amount of a complex medium such as yeast extract (0.01%) is, however, required.  相似文献   

17.
The role of carbon dioxide in glucose metabolism of Bacteroides fragilis   总被引:2,自引:0,他引:2  
The effect of CO2 concentration on growth and glucose fermentation of Bacteroides fragilis was studied in a defined mineral medium. Batch culture experiments were done in closed tubes containing CO2 concentrations ranging from 10% to 100% (with appropriate amounts of bicarbonate added to maintain the pH at 6.7). These experiments revealed that CO2 had no influence on growth rate or cell yield when the CO2 concentration was above 30% CO2 (minimum available CO2–HCO 3 - , 25.5 mM), whereas a slight decrease in these parameters was observed at 20% and 10% CO2 (available CO2–HCO 3 - , 17 and 8.5 mM, respectively). If CO2–HCO 3 - concentrations were below 10 mM, the lag phase lengthened and a decrease in maximal growth rate and cell yield were observed. The amount of acetate made decreased, while d-lactate concentration increased. A net production of CO2 allowed growth under conditions of extremely low concentrations of added CO2.When B. fragilis was grown in continuous culture with 100% CO2 or 100% N2, the dilution rate influenced the concentrations of acetate, succinate, propionate, d-lactate, l-malate and formate formed. Decreasing the dilution rate favored propionate and acetate production under both conditions. When the organism was grown with 100% N2, the amount of propionate formed was greater than the amount of succinate formed at all dilution rates. Except at slow dilution rates the reverse was true when 100% CO2 was used. B. fragilis was unable to grow at dilution rates faster than 0.154 h-1 when grown with 100% N2; the Y glc max was 67.9 g DW cells/mol glucose and m s was 0.064 mmol glucose/g DW·h. If the gas atmosphere was 100% CO2 the organism was washed out of the culture when the dilution rate exceeded 0.38 h-1; the Y glc max was 59.4 g DW cells/mol glucose and m s was 0.094 mmol glucose/g DW·h.Measurement of the phosphoenolpyruvate (PEP) carboxykinase (E.C. 4.1.1.49) with whole, permeabilized cells of B. fragilis showed an increase of specific enzyme activity with decreasing CO2 concentrations. The mechanisms used by B. fragilis to adjust to low levels of CO2 are discussed.  相似文献   

18.
Nostoc sp. was cultivated in an air-lift reactor with continuous recirculation of the head gas phase that aerated and agitated the cyanobacterial suspension at regulated flow rates. The supply of inorganic carbon for growth was coupled with pH control, in the range of 7.7 to 8.1, by intermittent sparging of CO2-head gas mixtures. The formation of irregular bubbles with swirling motion at the photostage of the reactor promoted efficient CO2 transference in dense populations of Nostoc sp. (1.1 g/l) when bubbling at flow rates of 10 l/min. Biomass productivity was almost six-fold higher in the photoreactor (16.4 mg/l.h) than in a conventional system (2.8 mg/l.h). The exponential growth phase of cultures in the photoreactor amounted to 60% of the total growth period.The authors are with the Laboratorio de Alimentos, Area Microbiologia, Facultad de Quimica Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina  相似文献   

19.
Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid.  相似文献   

20.
Sugarcane bagasse hemicellulose hydrolysates, pretreated by either over-liming or electrodialysis and, supplemented with nutrient materials, were fermented to ethanol using Pachysolen tannophilus DW06. Compared with detoxification by over-liming, detoxification by electrodialysis decreased the loss of sugar and increased the acetic acid removal, leading to better fermentability. A batch culture with electrodialytically pretreated hydrolysate as substrate was developed giving 21 g ethanol l−1 with a yield of 0.35 g g−1 sugar and productivity of 0.59 g l−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号