首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Paraneoplastic syndromes are "remote" complications of cancer characterized clinically by neurological disease. The sera and cerebrospinal fluid (CSF) from patients with paraneoplastic neurological syndromes (PNS) frequently contain autoantibodies to ill-defined neuronal antigens. We report here that neuronal glutamate receptors are targets for autoantibodies found in the serum from some patients with well-characterized PNS. MATERIALS AND METHODS: We have analyzed the serum from seven patients with well-characterized PNS for the presence of autoreactive antibodies to non-NMDA glutamate receptor subunits. Autoantibodies were assessed using Western blot, immunohistochemistry, and immunocytochemistry. Whole-cell electrophysiological recordings were used to examine the effect of antibodies on glutamate receptors expressed by cortical neurons in culture. RESULTS: Six of seven patients' serum contained autoantibodies to the non-NMDA glutamate receptor (GluR) subunits GluR1, GluR4, and/or GluR5/6. No patient had autoantibodies to GluR2, and only one patient exhibited weak immunoreactivity to GluR3. Electrophysiological analysis demonstrated that the serum from four of the six GluR-antibody-positive patients enhanced glutamate-elicited currents on cultured cortical neurons but had no effect on receptor function alone. Enhancement of glutamate-elicited currents was also produced by affinity-purified antibody to GluR5. CONCLUSIONS: The occurrence of autoantibodies to specific neuronal neurotransmitter subunits in the sera of patients with PNS and the ability of these autoantibodies to modulate glutaminergic receptor function suggest that some paraneoplastic neurological injury could result from glutamate-mediated excitotoxicity.  相似文献   

2.
3.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

4.
Ischemic stroke, or a brain attack, is the third leading cause of death in developed countries. A critical feature of the disease is a highly selective pattern of neuronal loss; certain identifiable subsets of neurons--particularly CA1 pyramidal neurons in the hippocampus are severely damaged, whereas others remain intact. A key step in this selective neuronal injury is Ca2+/Zn2+ entry into vulnerable neurons through alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels, a principle subtype of glutamate receptors. AMPA receptor channels are assembled from glutamate receptor (GluR)1, -2, -3, and -4 subunits. Circumstance data have indicated that the GluR2 subunits dictate Ca2+/Zn2+ permeability of AMPA receptor channels and gate injurious Ca2+/Zn2+ signals in vulnerable neurons. Therefore, targeting to the AMPA receptor subunit GluR2 can be considered a practical strategy for stroke therapy.  相似文献   

5.
6.
Abstract: RNA editing plays an important role in determining physiological characteristics of certain glutamate-gated receptor (GluR) channels such as Ca2+ permeability and desensitization kinetics. In one case, the editing changes a gene-encoded glutamine (Q) to an arginine (R) codon located in the channel-forming domain of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR-B and also the kainate receptor subunits GluR5 and GluR6. Another case of RNA editing alters an arginine (R) to a glycine (G) codon at a position termed the "R/G" site of AMPA subunits GluR-B, C, and D. Double-stranded RNA-specific adenosine deaminases (DRADA) have been implicated as agents involved in the editing. By using a human teratocarcinoma cell line, NT2, we investigated the change of the RNA editing of GluR subunits in conjunction with the expression of two DRADA members, DRADA1 and DRADA2 genes, during neuronal differentiation. Whereas Q/R and R/G site RNA editing both become progressively activated in differentiating NT2 cells, the expression of the two DRADA genes can already be detected even in the undifferentiated NT2 cells. Development of the editing machinery appears to require, in addition to DRADA enzymes, a currently unidentified mechanism(s) that may become activated during neuronal differentiation.  相似文献   

7.
We have defined conditions whereby glutamate becomes toxic to isolated cerebellar granule neurons in a physiologic salt solution (pH 7.4). In the presence of a physiologic Mg++ concentration, acute glutamate excitotoxicity manifests only when the temperature was reduced from 37°C to 22°C. In contrast to glutamate, N-methyl-D-aspartate (NMDA) was non-toxic at either temperature at concentrations as high as 1 mM. Glycine strongly potentiated both the potency and efficacy of glutamate but revealed only a modest NMDA response. The non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxalinedione (CNQX), potently protected against glutamate challenge, although the contribution of antagonism at strychnine-insensitive glycine sites could not be excluded. To further characterize the non-NMDA receptor contribution to the excitotoxic response, the promiscuity of glutamate interaction with ionotropic receptors was simulated by exposing neurons to NMDA in the presence of non-NMDA receptor agonists. NMDA toxicity was potentiated four- to sevenfold when non-NMDA receptors were coactivated by a subtoxic concentration of AMPA, kainate, or domoate. These results suggest that non-NMDA receptor activation participates in the mechanism of acute glutamate toxicity by producing neuronal depolarization (via sodium influx), which in turn promotes the release of the voltage-dependent magnesium blockade of NMDA receptor ion channels. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
We are interested in cellular co-expression patterns of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptor subunits 1-4 (GluR1-4) in substance P receptor (SPR)-containing neurons of the basal forebrain, which may act as a morphological basis for interaction between neurokinins and glutamate-driven neuronal signaling and excitotoxicity. Immunohistochemistry and laser scanning confocal microscopy in adult C57/BL mice revealed that distribution of SPR-positive neurons overlapped with that of GluR1-4-containing ones in most basal forebrain regions, i.e. the medial septal nucleus, nucleus of diagonal band of Broca, magnocellular preoptic nucleus and substantia innominata. Neurons showing both SPR and GluR1-4-immunoreactivities were found in above cholinergic neurons-rich containing basal forebrain regions. Semi-quantification analysis indicated that about 57-95% of SPR-positive neurons displayed GluR1-4-immunoreactivity. The percentages of AMPA receptor subunits co-localizing in SPR-positive neurons were GluR4 (48%), GluR1 (47%), GluR2 (26%) and GluR3 (20%), respectively. However, the neurons co-expressing SPR and GluR1-4 were hardly detected in the basal nucleus of Meynert of the basal forebrain. The co-localization of SPR and AMPA receptors has provided a molecular basis for functional interaction between neurokinins and AMPA receptors-mediated signaling in basal forebrain neurons. This study has also implied that glutamate-driven neuronal transmission and excitotoxicity can be modulated by neurokinin peptides in most basal forebrain regions but not in the basal nucleus of Meynert, suggesting that neurokinins or SP may play certain roles in determining neuronal functional properties or excitotoxic susceptibility in the various basal forebrain regions of mammals.  相似文献   

9.
10.
11.
12.
Summary Exposure of cultured cerebellar neurons to the histamine H1 receptor antagonist terfenadine resulted in neuronal degeneration and death. Terfenadine neurotoxicity was dependent upon concentration and time of exposure. After 2h exposure, 20µM terfenadine reduced the number of surviving neurons by 75%, and as low as 10nM terfenadine induced significant neurotoxicity after 5 days of exposure. Neuronal sensitivity to terfenadine changed with age in culture, and at 25 days in culture neurons appeared to be much less sensitive than at 5 or 9–17 days in culture. Neurotoxicity by terfenadine could not be prevented by high concentrations of histamine (5 mM), but it was significantly delayed by blocking NMDA or non-NMDA glutamate receptors with MK-801 or CNQX respectively, suggesting the involvement of excitatory transmission mediated by glutamate in the neurotoxicity induced by terfenadine in these neurons. We also found that the presence of terfenadine (5,µM) unveiled the potential excitotoxicity of the non-NMDA receptor agonist AMPA (100µM), and reduced the concentration of glutamate necessary to induce excitotoxicity, compared to untreated cultures. These results suggest a role for terfenadine in the modulation of the excitotoxic response mediated in cerebellar neurons through ionotropic glutamate receptors.  相似文献   

13.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

14.
Myosin V motors mediate cargo transport; however, the identity of neuronal molecules transported by these proteins remains unknown. Here we show that myosin Vb is expressed in several neuronal populations and associates with the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor subunit GluR1. In developing hippocampal neurons, expression of the tail domain of myosin Vb, but not myosin Va, enhanced GluR1 accumulation in the soma and reduced its surface expression. These changes were accompanied by reduced GluR1 clustering and diminished frequency of excitatory but not inhibitory synaptic currents. Similar effects were observed upon expression of full-length myosin Vb lacking a C-terminal region required for binding to the small GTPase Rab11. In contrast, mutant myosin Vb did not change the localization of several other neurotransmitter receptors, including the glutamate receptor subunit NR1. These results reveal a novel mechanism for the transport of a specific glutamate receptor subunit in neurons mediated by a member of the myosin V family.  相似文献   

15.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

16.
Excitotoxicity, which is mediated via glutamate receptors, is also a phenomenon of the enteric nervous system. Whether enteric glial cells (EGCs), which resemble astrocytes of the central nervous system, express glutamate receptors and hence are involved in gut excitotoxicity is not yet known. To investigate glutamate receptor subunit expression in EGCs, primary EGC cultures of the myenteric plexus were analyzed by real-time PCR and Western blotting. These studies indeed showed that in EGC cultures, mRNA of the glutamate receptor subunits NR1, NR2A/B, GluR1, GluR3, and GluR5 and the protein bands of the glutamate receptor subunits NR2A/B, GluR1, GluR3, and GluR5 could be detected. Thus, in the enteric nervous system, glutamate receptor subunits are also expressed by EGCs, indicating that these cells might be involved in gut excitotoxicity.  相似文献   

17.
In hippocampal neurons, the exocytotic process of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors is known to depend on activation of N-methyl-d-aspartate channels and its resultant Ca(2+) influx from extracellular spaces. Here we found that brain-derived neurotrophic factor (BDNF) induced a rapid surface translocation of AMPA receptors in an activity-independent manner in developing neocortical neurons. The receptor translocation became evident within hours as monitored by [(3)H]AMPA binding and was resistant against ionotropic glutamate receptor antagonists as evidenced with surface biotinylation assay. This process required intracellular Ca(2+) and was inhibited by the blockers of conventional exocytosis, brefeldin A, botulinum toxin B, and N-ethylmaleimide. To explore the translocation mechanism of individual AMPA receptor subunits, we utilized the human embryonic kidney (HEK) 293 cells carrying the BDNF receptor TrkB. After the single transfection of GluR2 cDNA or GluR1 cDNA into HEK/TrkB cells, BDNF triggered the translocation of GluR2 but not that of GluR1. Subsequent mutation analysis of GluR2 carboxyl-terminal region indicated that the translocation of GluR2 subunit in HEK293 cells involved its N-ethylmaleimide-sensitive factor-binding domain but not its PDZ-interacting site. Following co-transfection of GluR1 and GluR2 cDNAs, solid phase cell sorting revealed that GluR1 subunits were also able to translocate to the cell surface in response to BDNF. An immunoprecipitation assay confirmed that BDNF stimulation can enhance the interaction of GluR2 with N-ethylmaleimide-sensitive factor. These results reveal a novel role of BDNF in regulating the surface expression of AMPA receptors through a GluR2-NSF interaction.  相似文献   

18.
The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.  相似文献   

19.
Excitotoxic Death of a Subset of Embryonic Rat Motor Neurons In Vitro   总被引:3,自引:1,他引:2  
Abstract : We have used cultures of purified embryonic rat spinal cord motor neurons to study the neurotoxic effects of prolonged ionotropic glutamate receptor activation. NMDA and non-NMDA glutamate receptor agonists kill a maximum of 40% of the motor neurons in a concentration- and time-dependent manner, which can be blocked by receptor subtype-specific antagonists. subunit-specific antibodies stain all of the motor neurons with approximately the same intensity and for the same repertoire of subunits, suggesting that the survival of the nonvulnerable population is unlikely to be due to the lack of glutamate receptor expression. Extracellular Ca2+ is required for excitotoxicity, and the route of entry initiated by activation of non-NMDA, but not NMDA, receptors is L-type Ca2+ channels. Ca2+ imaging of motor neurons after application of specific glutamate receptor agonists reveals a sustained rise in intracellular Ca2+ that is present to a similar degree in most motor neurons, and can be blocked by appropriate receptor/channel antagonists. Although the lethal effects of glutamate receptor agonists are seen in only a subset of cultured motor neurons, the basis of this selectivity is unlikely to be simply the glutamate receptor phenotype or the level/pattern of rise in agonist-evoked intracellular Ca2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号