共查询到20条相似文献,搜索用时 0 毫秒
1.
目的比较分析H7N9病毒与H1N1病毒感染小鼠病理学损伤特点,初步探讨两种病毒感染致小鼠急性肺损伤的致病机制。方法 H7N9病毒与H1N1病毒分别感染小鼠,观察不同病毒感染后小鼠生存率,并于不同时间点取心、肝、脾、肺、肾、脑、肠等组织,伊红-苏木素染色并进行组织病理学分析,免疫组化检测病毒抗原分布及中性粒细胞浸润。综合分析肺组织病理损伤与病毒复制、宿主免疫反应之间的关系。结果 H7N9病毒感染小鼠肺及脾脏损伤较轻,存活率较高。H1N1病毒感染的小鼠肺及脾脏损伤较重,感染后9 d全部死亡;两种病毒抗原主要分布于支气管上皮细胞、少量间质细胞和肺泡上皮细胞,病毒复制水平无明显差异。但H1N1病毒感染后肺及脾脏中均有大量中性粒细胞浸润,小鼠机体炎症反应明显强于H7N9病毒感染后小鼠炎症反应。结论 H7N9病毒与H1N1病毒感染后小鼠病理学损伤特点及程度均不同,病毒复制是小鼠肺损伤的诱发因素但并非决定因素,宿主针对病毒感染产生的免疫反应程度与急性肺损伤密切相关。 相似文献
2.
3.
Shinya K Makino A Hatta M Watanabe S Kim JH Hatta Y Gao P Ozawa M Le QM Kawaoka Y 《Journal of virology》2011,85(10):5202-5207
Although H5N1 influenza A viruses can cause systemic infection, their neurotropism and long-term effects on the central nervous system (CNS) are not fully understood. We assessed H5N1viral invasion of the CNS and its long-term effects in a ferret model. An H5N1 virus caused nonsuppurative encephalitis, which lasted for 3 months without neurologic signs. Further, another H5N1 virus caused nonsuppurative vasculitis with brain hemorrhage. Three-dimensional analysis of viral distribution in the brain identified the olfactory system as a major route for brain invasion. The efficient growth of virus in the upper respiratory tract may thus facilitate viral brain invasion. 相似文献
4.
Highly pathogenic avian influenza A H5N1 viruses caused an outbreak of human respiratory illness in Hong Kong. Of 15 human H5N1 isolates characterized, nine displayed a high-, five a low-, and one an intermediate-pathogenicity phenotype in the BALB/c mouse model. Sequence analysis determined that five specific amino acids in four proteins correlated with pathogenicity in mice. Alone or in combination, these specific residues are the likely determinants of virulence of human H5N1 influenza viruses in this model. 相似文献
5.
Yoonjin Kim Moon Jung Song Woon‐Won Jung Jung Bok Seo Donggeun Sul 《Proteomics》2014,14(16):1933-1942
This study profiled the plasma proteins of patients infected by the 2011 H1N1 influenza virus. Differential protein expression was identified in plasma obtained from noninfected control subjects (n = 15) and H1N1‐infected subjects (n = 15). Plasma proteins were separated by a 2DE large gel system and identified by nano‐ultra performance LC‐MS. Western blot assays were performed to validate proteins. Eight plasma proteins were upregulated and six proteins were downregulated among 3316 plasma proteins in the H1N1‐infected group as compared with the control group. Of 14 up‐ and downregulated proteins, nine plasma proteins were validated by Western blot analysis. Putative protein FAM 157A, leucine‐rich alpha 2 glycoprotein, serum amyloid A protein, and dual oxidase 1 showed significant differential expression. The identified plasma proteins could be potential candidates for biomarkers of H1N1 influenza viral infection. Further studies are needed to develop these proteins as diagnostic biomarkers. 相似文献
6.
Xu L Bao L Li F Lv Q Ma Y Zhou J Xu Y Deng W Zhan L Zhu H Ma C Shu Y Qin C 《PloS one》2011,6(12):e28901
The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses. 相似文献
7.
人H7N9禽流感病毒、高致病H5N1禽流感病毒及H1N1流感病毒感染小鼠特征分析 总被引:1,自引:0,他引:1
目的对比分析人高致病H5N1禽流感病毒、H7N9禽流感病毒及H1N1流感病毒分别感染BALB/c小鼠后的机体反应特征。方法分别以H7N9病毒、H5N1病毒和H1N1病毒滴鼻感染BALB/c小鼠,观察小鼠存活率、体征变化及感染后肺组织病理损伤差异,检测小鼠感染流感病毒后肺组织增殖细胞核抗原(PCNA)表达并观察小鼠感染后修复状况。结果 H7N9病毒、H5N1病毒和H1N1病毒均感染BALB/c小鼠,小鼠存活率依次为H7N9H1N1H5N1,肺组织病理损伤严重程度依次为H5N1H1N1H7N9,PCNA表达水平依次为H7N9H1N1H5N1。结论 H7N9病毒感染后宿主炎症反应较小,感染后小鼠肺组织自我修复能力较强;H5N1病毒感染BALB/c小鼠后的机体反应最为强烈,感染后恢复能力差,致死率高。 相似文献
8.
由H5N1流感病毒引起的高致病性禽流感,在禽类之间广泛传播。当人类接触这些禽类时,可能会被感染并产生严重的呼吸道症状,且死亡率高达60%。血凝素(hemagglutinin,HA)是H5N1病毒中和抗体的主要抗原,为了便于对病毒的HA突变进行研究,根据HA遗传基因的差异远近,所有的H5病毒株都被划分在20个分支内。对于H5N1病毒进化的研究在禽流感疫苗的研制、禽流感大流行的预防等方面均具有重要意义。现对禽流感、H5N1病毒特征、血凝素的结构功能、H5N1病毒的分支以及病毒进化的研究进行概述。 相似文献
9.
Lam TT Hon CC Lemey P Pybus OG Shi M Tun HM Li J Jiang J Holmes EC Leung FC 《Molecular ecology》2012,21(12):3062-3077
Understanding how pathogens invade and become established in novel host populations is central to the ecology and evolution of infectious disease. Influenza viruses provide unique opportunities to study these processes in nature because of their rapid evolution, extensive surveillance, large data sets and propensity to jump species boundaries. H5N1 highly pathogenic avian influenza virus (HPAIV) is a major animal pathogen and public health threat. The virus is of particular importance in Indonesia, causing severe outbreaks among poultry and sporadic human infections since 2003. However, little is known about how H5N1 HPAIV emerged and established in Indonesia. To address these questions, we analysed Indonesian H5N1 HPAIV gene sequences isolated during 2003-2007. We find that the virus originated from a single introduction into East Java between November 2002 and October 2003. This invasion was characterized by an initially rapid burst of viral genetic diversity followed by a steady rate of lineage replacement and the maintenance of genetic diversity. Several antigenic sites in the haemagglutinin gene were subject to positive selection during the early phase, suggesting that host-immune-driven selection played a role in host adaptation and expansion. Phylogeographic analyses show that after the initial invasion of H5N1, genetic variants moved both eastwards and westwards across Java, possibly involving long-distance transportation by humans. The phylodynamics we uncover share similarities with other recently studied viral invasions, thereby shedding light on the ecological and evolutionary processes that determine disease emergence in a new geographical region. 相似文献
10.
The virulence of influenza virus is determined by viral and host factors. Data on the genetic basis of the virulence of H5N1 influenza viruses have increased over the past decade; however, the contributions of host factors to the outcomes of H5N1 infection remain largely unknown. Here, we tested two chicken H5N1 viruses in mice and found that A/chicken/VN1214/2007 was nonlethal in mice and only replicated in the lung, whereas A/chicken/VN1180/2006 was highly lethal and replicated systemically in mice. To investigate the host response against these two different virus infections, we performed proteomic analysis by using 2D DIGE on the lung tissues of mice collected on days 1 and 3 postinoculation with different viruses or PBS as a control. Thirty-nine differentially expressed (DE) proteins related to "immune and stimulus response," "macromolecular biosynthesis and metabolism," and "cellular component and cytoskeleton" were identified in the virus-inoculated groups. Moreover, 13 DE proteins were identified between the two virus-inoculated groups, implying that these proteins may play important roles in the different outcomes of infection with these two viruses. Our data provide important information regarding the host response to mild and lethal H5N1 influenza virus infection. 相似文献
11.
Muramoto Y Ozaki H Takada A Park CH Sunden Y Umemura T Kawaoka Y Matsuda H Kida H 《Microbiology and immunology》2006,50(1):73-81
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens. 相似文献
12.
《Phytomedicine》2020
BackgroundInfluenza virus is one of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. Houttuynia cordata is a traditionally used medicinal plant for the treatment of pneumonia. Flavonoids are one of the major bioactive constituents of Houttuynia cordata.PurposeThis study was designed to investigate the therapeutic effect and mechanism of flavonoid glycosides from H. cordata on influenza A virus (IAV)-induced acute lung injury (ALI) in mice.MethodsFlavonoids from H. cordata (HCF) were extracted from H. cordata and identified by high-performance liquid chromatography. Mice were infected intranasally with influenza virus H1N1 (A/FM/1/47). HCF (50, 100, or 200 mg/kg) or Ribavirin (100 mg/kg, the positive control) were administered intragastrically. Survival rates, life spans, weight losses, lung indexes, histological changes, inflammatory infiltration, and inflammatory markers in the lungs were measured. Lung virus titers and neuraminidase (NA) activities were detected. The expression of Toll-like receptors (TLRs) and levels of NF-κB p65 phosphorylation (NF-κB p65(p)) in the lungs were analysed. The effects of HCF on viral replication and TLR signalling were further evaluated in cells.ResultsHCF contained 78.5% flavonoid glycosides. The contents of rutin, hyperin, isoquercitrin, and quercitrin in HCF were 8.8%, 26.7%, 9.9% and 31.7%. HCF (50, 100 and 200 mg/kg) increased the survival rate and life span of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with HCF (50, 100 and 200 mg/kg) showed lesser weight loss and lower lung index than the model group. The lungs of HCF-treated ALI mice presented more intact lung microstructural morphology, milder inflammatory infiltration, and lower levels of monocyte chemotactic protein 1 (MCP-1), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α) and malondialdehyde (MDA) than in the model group. Further investigation revealed that HCF exerted antiviral and TLR-inhibitory effects in vivo and in vitro. HCF (50, 100 and 200 mg/kg) reduced lung H1N1 virus titers and inhibited viral NA activity in mice. HCF (100 and 200 mg/kg) elevated the levels of interferon-β in lungs. HCF also decreased the expression of TLR3/4/7 and level of NF-κB p65(p) in lung tissues. In vitro experiments showed that HCF (50, 100 and 200 μg/ml) significantly inhibited viral proliferation and suppressed NA activity. In RAW 264.7 cells, TLR3, TLR4, and TLR7 agonist-stimulated cytokine secretion, NF-κB p65 phosphorylation, and nuclear translocation were constrained by HCF treatment. Furthermore, among the four major flavonoid glycosides in HCF, hyperin and quercitrin inhibited both viral replication and TLR signalling in cells.ConclusionHCF significantly alleviated H1N1-induced ALI in mice, which were associated with its dual antiviral and anti-inflammatory effects via inhibiting influenzal NA activity and TLR signalling. among the four major flavonoid glycosides in HCF, hyperin and quercitrin played key roles in the therapeutic effect of HCF. 相似文献
13.
本文旨在探讨2009 甲型流行性感冒( 流感) 病毒(H1N1) 感染者的常规免疫学指标与健康人的差异。 采用流式细胞术检测32 名甲型H1N1 感染者外周血不同T 细胞亚群, 同时进行血清特定蛋白检测及血细胞 计数。结果显示, 与健康者相比, 甲型H1N1 感染者外周血CD3+ 、CD3+ CD4+ 、CD3+ CD8+ T 细胞( cells/μl) 显著降低, 血清补体成分C3、C4( g/L) 及C反应蛋白均值( mg/L) 显著升高, 血小板、白细胞、淋巴细胞与嗜酸性细胞显著降低, 单核细胞显著升高。结果提示, 甲型H1N1 感染者的常规免疫学指标出现异常发展趋势。 相似文献
14.
Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans 总被引:20,自引:0,他引:20 下载免费PDF全文
Previously, we observed that several virulent influenza A (H5N1) viruses which caused severe or fatal disease in humans were also lethal in BALB/c mice following dissemination of the virus to solid organs, including the brain. In contrast, one particular human H5N1 virus was nonlethal in mice and showed no evidence of systemic spread. To compare H5N1 viruses of varying pathogenicity for their ability to alter the mammalian immune system, mice were infected with either influenza A/Hong Kong/483/97 (HK/483) (lethal) or A/Hong Kong/486/97 (HK/486) (nonlethal) virus and monitored for lymphocyte depletion in the blood, lungs, and lymphoid tissue. Intranasal infection with HK/483 resulted in a significant decrease in the total number of circulating leukocytes evident as early as day 2 postinfection. Differential blood counts demonstrated up to an 80% drop in lymphocytes by day 4 postinfection. In contrast, nonlethal HK/486-infected mice displayed only a transient drop of lymphocytes during the infectious period. Analysis of lung and lymphoid tissue from HK/483-infected mice demonstrated a reduction in the number of CD4(+) and CD8(+) T cells and reduced synthesis of the cytokines interleukin-1beta and gamma interferon and the chemokine macrophage inflammatory protein compared with HK/486-infected mice. In contrast, the cytokine and chemokine levels were increased in the brains of mice infected with HK/483 but not HK/486. Evidence of apoptosis in the spleen and lung of HK/483-infected mice was detected in situ, suggesting a mechanism for lymphocyte destruction. These results suggest that destructive effects on the immune system may be one factor that contributes to the pathogenesis of H5N1 viruses in mammalian hosts. 相似文献
15.
Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001 总被引:14,自引:0,他引:14 下载免费PDF全文
Lipatov AS Krauss S Guan Y Peiris M Rehg JE Perez DR Webster RG 《Journal of virology》2003,77(6):3816-3823
We studied the pathogenicity of five different genotypes (A to E) of highly pathogenic avian H5N1 viruses, which contained HA genes similar to those of the H5N1 virus A/goose/Guangdong/1/96 and five different combinations of "internal" genes, in a mouse model. Highly pathogenic, neurotropic variants of genotypes A, C, D, and E were isolated from the brain after a single intranasal passage in mice. Genotype B virus was isolated from lungs only. The mouse brain variants had amino acid changes in all gene products except PB1, NP, and NS1 proteins but no common sets of mutations. We conclude that the original H5N1/01 isolates of genotypes A, C, D, and E were heterogeneous and that highly pathogenic neurotropic variants can be rapidly selected in mice. 相似文献
16.
17.
Qiu C Tian D Wan Y Zhang W Qiu C Zhu Z Ye R Song Z Zhou M Yuan S Shi B Wu M Liu Y Gu S Wei J Zhou Z Zhang X Zhang Z Hu Y Yuan Z Xu J 《PloS one》2011,6(8):e22603
Few studies on the humoral immune responses in human during natural influenza infection have been reported. Here, we used serum samples from pandemic 2009 H1N1 influenza infected patients to characterize the humoral immune responses to influenza during natural infection in humans. We observed for the first time that the pandemic 2009 H1N1 influenza induced influenza A-specific IgM within days after symptoms onset, whereas the unit of IgG did not changed. The magnitude of influenza A-specific IgM antibodies might have a value in predicting the rate of virus clearance to some degree. However, the newly developed IgM was not associated with hemagglutination inhibition (HI) activities in the same samples but correlated with HI activities of subsequently collected sera which were mediated by IgG antibodies, indicating that IgM was critical for influenza infection and influences subsequent IgG antibody responses. These findings provide new important insights on the human immunity to natural influenza infection. 相似文献
18.
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention. 相似文献
19.
Nick X. Wang Jie J. Zheng 《Protein science : a publication of the Protein Society》2009,18(4):707-715
Influenza A (H5N1) virus is one of the world's greatest pandemic threats. Neuraminidase (NA) inhibitors, oseltamivir and zanamivir, prevent the spread of influenza, but drug‐resistant viruses have reduced their effectiveness. Resistance depends on the binding properties of NA‐drug complexes. Key residue mutations within the active site of NA glycoproteins diminish binding, thereby resulting in drug resistance. We performed molecular simulations and calculations to characterize the mechanisms of H5N1 influenza virus resistance to oseltamivir and predict potential drug‐resistant mutations. We examined two resistant NA mutations, H274Y and N294S, and one non‐drug‐resistant mutation, E119G. Six‐nanosecond unrestrained molecular dynamic simulations with explicit solvent were performed using NA‐oseltamivir complexes containing either NA wild‐type H5N1 virus or a variant. MM_PBSA techniques were then used to rank the binding free energies of these complexes. Detailed analyses indicated that conformational change of E276 in the Pocket 1 region of NA is a key source of drug resistance in the H274Y mutant but not in the N294S mutant. 相似文献
20.
During H5N1 influenza virus infection, proinflammatory cytokines are markedly elevated in the lungs of infected hosts. The significance of this dysregulated cytokine response in H5N1-mediated pathogenesis remains to be determined. To investigate the influence of hypercytokinemia, or "cytokine storm," a transgenic mouse technology was used. The classical NF-kappaB pathway regulates the induction of most proinflammatory cytokines. Deletion of the p50 subunit leads to a markedly reduced expression of the NF-kappaB-regulated cytokines and chemokines. Here we show that H5N1 influenza virus infection of this transgenic mouse model resulted in a lack of hypercytokinemia but not in altered pathogenesis. 相似文献