首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation   总被引:7,自引:0,他引:7  
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.  相似文献   

2.
为了研究BAMBI在猪前体脂肪细胞分化过程中的作用,构建了BAMBI慢病毒干扰载体,包装并感染猪前体脂肪细胞,采用油红O染色、油红O提取比色法检测猪前体脂肪细胞分化情况,采用Real-time qPCR、Western blotting检测成脂标志基因mRNA以及蛋白水平表达的变化情况。结果表明,BAMBI慢病毒干扰载体感染前体脂肪细胞后显著降低了BAMBI的表达,shRNA2干扰效率最高,达到了60%以上,干扰BAMBI后能增加猪脂肪细胞的脂质积累,增加了成脂标志基因过氧化物酶体增殖物激活受体γ(Peroxisome proliferator-activated receptorγ,PPARγ)和脂肪酸结合蛋白2(Adipocyte protein 2,ap2)的表达。此外,干扰BAMBI后ERK1/2的磷酸化水平减少了。这些结果表明,BAMBI可能通过促进ERK1/2的磷酸化抑制脂肪细胞分化。  相似文献   

3.
Bhattacharya I  Ullrich A 《FEBS letters》2006,580(24):5765-5771
In adipogenesis, growth factors play a crucial role. Using serum depleted condition, we studied the causal role of endothelin-1 (ET-1) and epidermal growth factor (EGF), separately or together, in adipocyte differentiation of 3T3-L1 cells. ET-1 stimulation caused an anti-adipogenic response and this effect was potentiated upon treatment with EGF. Co-treatment with EGF and ET-1 blocked the expression of C/EBPalpha and PPARgamma, the adipogenic markers. The inhibition of adipogenesis was preceded by a biphasic (early and late) attenuation of Akt phosphorylation. We suggest that treatment with ET-1 and EGF together induce a more potent anti-adipogenic response, involving increased Erk1/2 phosphorylation and biphasic attenuation of Akt phosphorylation.  相似文献   

4.
Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons   总被引:6,自引:4,他引:2  
Virus-encoded modulation of apoptosis may serve as a mechanism to enhance cell survival and virus persistence. The impact of productive varicella-zoster virus (VZV) infection on apoptosis appears to be cell type specific, as infected human sensory neurons are resistant to apoptosis, yet human fibroblasts readily become apoptotic. We sought to identify the viral gene product(s) responsible for this antiapoptotic phenotype in primary human sensory neurons. Treatment with phosphonoacetic acid to inhibit viral DNA replication and late-phase gene expression did not alter the antiapoptotic phenotype, implicating immediate-early (IE) or early genes or a virion component. Compared to the parental VZV strain (rOKA), a recombinant virus unable to express one copy of the diploid IE gene ORF63 (rOkaΔORF63) demonstrated a significant induction of apoptosis in infected neurons, as determined by three methods: annexin V staining, deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining, and transmission electron microscopy. Furthermore, neurons transfected with a plasmid expressing ORF63 resisted apoptosis induced by nerve growth factor withdrawal. These results show that ORF63 can suppress apoptosis of neurons and provide the first identification of a VZV gene encoding an antiapoptotic function. As ORF63 is expressed in neurons during both productive and latent infection, it may play a significant role in viral pathogenesis by promoting neuron survival during primary and reactivated infections.  相似文献   

5.
Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.  相似文献   

6.
S100A1 is a Ca2+-binding protein of the EF-hand type that belongs to the S100 protein family. It is specifically expressed in the myocardium at high levels and is considered to be an important regulator of cardiac contractility. Because the S100A1 protein is released into the extracellular space during ischemic myocardial injury, we examined the cardioprotective potential of the extracellular S100A1 protein on ventricular cardiomyocytes in vitro. In this report we show that extracellularly added S100A1 protein is endocytosed into the endosomal compartment of neonatal ventricular cardiomyocytes via a Ca2+-dependent clathrin-mediated process. S100A1 uptake protects neonatal ventricular cardiomyocytes from 2-deoxyglucose and oxidative stress-induced apoptosis in vitro. S100A1-mediated anti-apoptotic effects involve specific activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pro-survival pathway, including activation of phospholipase C, protein kinase C, mitogen-activated protein kinase kinase 1, and ERK1/2. In contrast, neither transsarcolemmal Ca2+ influx via the L-type channel nor protein kinase A activity seems to take part in the S100A1-mediated signaling pathway. In conclusion, this study provides evidence for the S100A1 protein serving as a novel cardioprotective factor in vitro. These findings warrant speculation that injury-dependent release of the S100A1 protein from cardiomyocytes may serve as an intrinsic mechanism to promote survival of the myocardium in vivo.  相似文献   

7.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

8.
9.
WNK4 inhibits NCC protein expression through MAPK ERK1/2 signaling pathway   总被引:1,自引:0,他引:1  
WNK [with no lysine (K)] kinase is a subfamily of serine/threonine kinases. Mutations in two members of this family (WNK1 and WNK4) cause pseudohypoaldosteronism type II featuring hypertension, hyperkalemia, and metabolic acidosis. WNK1 and WNK4 were shown to regulate sodium chloride cotransporter (NCC) activity through phosphorylating SPAK and OSR1. Previous studies including ours have also shown that WNK4 inhibits NCC function and its protein expression. A recent study reported that a phorbol ester inhibits NCC function via activation of extracellular signal-regulated kinase (ERK) 1/2 kinase. In the current study, we investigated whether WNK4 affects NCC via the MAPK ERK1/2 signaling pathway. We found that WNK4 increased ERK1/2 phosphorylation in a dose-dependent manner in mouse distal convoluted tubule (mDCT) cells, whereas WNK4 mutants with the PHA II mutations (E562K and R1185C) lost the ability to increase the ERK1/2 phosphorylation. Hypertonicity significantly increased ERK1/2 phosphorylation in mDCT cells. Knock-down of WNK4 expression by siRNA resulted in a decrease of ERK1/2 phosphorylation. We further showed that WNK4 knock-down significantly increases the cell surface and total NCC protein expressions and ERK1/2 knock-down also significantly increases cell surface and total NCC expression. These data suggest that WNK4 inhibits NCC through activating the MAPK ERK1/2 signaling pathway.  相似文献   

10.
The mechanisms by which T lymphocytes escape apoptosis during their activation are still poorly defined. In this study, we elucidated the intracellular signaling pathways through which beta1 integrins modulate Fas-mediated apoptosis in T lymphocytes. In experiments done in Jurkat T cells and activated peripheral blood T lymphocytes, engagement of alpha2beta1 integrin with collagen type I (Coll I) was found to significantly reduce Fas-induced apoptosis and caspase-8 activation; Annexin V binding and DNA fragmentation were reduced by approximately 42 and 38%, respectively. We demonstrated that the protective action of Coll I does not require new protein synthesis but was dependent on the activation of the MAPK/Erk pathway. Furthermore, we found that activation of protein phosphatase 2A (PP2A) by Coll I was required for both Coll I-mediated activation of Erk, and inhibition of Fas-induced caspase-8 activation and apoptosis. Other ligands of beta1 integrins, fibronectin (Fbn), and laminin (Lam), did not sustain significant Erk activation and had no effect on Fas-induced apoptosis. Taken together, these results provide the first evidence of a PP2A-dependent activation of the MAPK/Erk pathway downstream of alpha2beta1 integrin, which has a functional role in regulating Fas-mediated apoptosis in T lymphocytes. As such, this study emphasizes the potential importance that Coll I interactions may have on the control of T lymphocyte homeostasis and their persistence in chronic inflammatory diseases.  相似文献   

11.
ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.  相似文献   

12.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

13.
The aim of this study was to investigate whether the heme oxygenase (HO) pathway could modulate proliferation of airway smooth muscle (ASM) and the mechanism(s) involved in this phenomenon. In cultured human ASM cells, 10% fetal calf serum or 50 ng/ml platelet-derived growth factor AB induced cell proliferation, extracellular and intracellular reactive oxygen species (ROS) production and ERK1/2 phosphorylation. Pharmacological HO-1 induction (by 10 microm hemin or by 20 microm cobalt-protoporphyrin) and HO inhibition (by 25 microm tin-protoporphyrin or by an antisense oligonucleotide), respectively, reduced and enhanced significantly both cell proliferation and ROS production. Neither the carbon monoxide scavenger myoglobin (5-20 microm) nor the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one could reverse ASM proliferation induced by tin-protoporphyrin, making a role of the CO-cGMP pathway in HO-modulated proliferation unlikely. By contrast, bilirubin (1 microm) and the antioxidant N-acetyl-cysteine (1 mm) significantly reduced mitogen-induced cell proliferation, ROS production, and ERK1/2 phosphorylation. Furthermore, both bilirubin and N-acetyl-cysteine and the ERK1/2 inhibitor PD98059 significantly reversed the effects of HO inhibition on ASM proliferation. These results could be relevant to ASM alterations observed in asthma because activation of the HO pathway prevented the increase in bronchial smooth muscle area induced by repeated ovalbumin challenge in immunized guinea pigs, whereas inhibition of HO had the opposite effect. In conclusion, this study provides evidence for an antiproliferative effect of the HO pathway in ASM in vitro and in vivo through a bilirubin-mediated redox modulation of phosphorylation of ERK1/2.  相似文献   

14.
Cystathionine gamma-lyase (CSE) is a key enzyme in the trans-sulfuration pathway. CSE uses L-cysteine as a substrate to produce hydrogen sulfide (H2S). The CSE/H2S system has been shown to play an important role in regulating cellular functions in different systems. In the present study, we used CSE stably overexpressed HEK-293 cells to explore the effect of the CSE/H2S system on cell growth and proliferation. The overexpression of CSE resulted in increases in CSE mRNA levels, CSE proteins, and intracellular H2S production rates, as well as the inhibition of cell proliferation and DNA synthesis. These effects were accompanied by a sustained ERK activation and up-regulation of the cyclin-dependent kinase inhibitor p21Cip/WAK-1. Blocking the action of ERK with U0126 inhibited the induction of p21Cip/WAK-1, suggesting that ERK activation functions upstream of p21Cip/WAK-1 activation to initiate the CSE overexpression-induced cell growth inhibition. The antiproliferative effect of CSE is likely mediated by endogenously produced H2S because the H2S scavenger methemoglobin (10 microm) significantly decreased the H2S production rate and reversed the antiproliferative effect afforded by CSE. Exogenous H2S (100 microm) also inhibited cell proliferation. However, the other CSE-catalyzed products, ammonium and pyruvate, failed to inhibit cell proliferation. Methemoglobin also abolished the inhibitory effect of exogenous H2S on cell proliferation. Moreover, exogenous H2S induced a sustained ERK and p21Cip/WAK-1 activation. These findings support the hypothesis that endogenously produced H2S may play a fundamental role in cell proliferation and survival.  相似文献   

15.
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.  相似文献   

16.

Background

In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs). ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown.

Results

To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2.

Conclusions

These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD.  相似文献   

17.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

18.
Endothelial dysfunction caused by cell apoptosis is thought to be a major cause of diabetic vascular complications. Advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic vascular complications by inducing apoptosis of endothelial cells. The aim of this study was to explore the effect of ghrelin on AGEs‐induced apoptosis in cultured human umbilical vein endothelial cells (HUVECs) and the potential mechanisms involved in this process. Exposure to AGEs (200 mg l?1) for 48 h caused a significant increase in cell apoptosis, while pretreatment with ghrelin eliminated AGEs‐induced apoptosis in HUVECs, as evaluated by MTT assays, flow cytometry and Hoechst 33258 staining. The induction of caspase‐3 activation was also prevented by ghrelin in cells incubated with AGEs. Exposure to ghrelin (10?6 M) resulted in a rapid activation of extracellular signal‐regulated protein kinase (ERK)1/2 and Akt. The inhibitory effect of ghrelin on caspase‐3 activity was attenuated by inhibitors of ERK1/2 (PD98059), PI3K/Akt (LY294002) and growth hormone secretagogue receptor (GHSR)‐1a (D ‐Lys3‐growth hormone releasing peptide‐6). The results of this study indicated that ghrelin could inhibit AGEs‐mediated cell apoptosis via the ERK1/2 and PI3K/Akt pathways and GHSR‐1a was also involved in the protective action of ghrelin in HUVECs. As such, ghrelin demonstrates significant potential for preventing diabetic cardiovascular complications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of this study was to investigate how miR-21 promotes proliferation and inhibits apoptosis in esophageal squamous cell carcinoma (ESCC). MTT, wound healing assay and cell cycle showed that proliferation and migration of ESCC cell line Eca109 cells were increased in miR-21 mimics group, and decreased in anti-miR-21 Oligonucleotide (AMO) group after transfection into Eca109 cells with miR-21 mimics, AMO and scramble sequence, respectively. Cell apoptosis assay indicated that cell apoptosis can be obviously inhibited by overexpression of miR-21 and promoted by downregulation of miR-21. Meanwhile, western-blot results showed that p-ERK1/2 expression was elevated in miR-21 mimics group, whereas decreased in AMO group. Furthermore, the ERK1/2, a key component of MAPK signaling pathway, was knocked down, and overexpressed successfully using shRNA-ERK1/2 and overexpressing plasmids containing full length cDNA of ERK1/2, respectively. It was observed that shRNA-ERK1/2 can significantly decreased the level of miR-21 expression, while overexpression of ERK1/2 can up-regulate expression of miR-21. As further confirmation, Eca109 cells were treated with gradient concentration of U0126, a kind of MEK inhibitor, and expression of miR-21 was subsequently examined. It was found that U0126 can significantly decreased endogenous expression of miR-21. In parallel, U0126 decreased cell proliferation, migration and increased the apoptosis in Eca109 cells, with the expression of miR-21 being reduced significantly in U0126 group as compared with control groups. Our findings indicated that miR-21 promoted the proliferation, migration and inhibited apoptosis of Eca109 cells through activating ERK1/2/MAPK pathway, and that targeting miR-21 could be a promising therapeutic strategy in ESCC.  相似文献   

20.
Monnet C  Gavard J  Mège RM  Sobel A 《FEBS letters》2004,576(1-2):114-118
The physiological role of the prion protein is largely unknown. Here, clustering of prion at the surface of GT1-7 cells was observed upon anti-prion antibody treatments. This clustering was associated with a rapid and transient phosphorylation of the mitogen activated protein kinases (MAPKs) extracellular receptor kinases 1 and 2 (ERK1/2), and also of the microtubule-destabilizing protein stathmin at serine 16. The specificity of this antibody-mediated activation was ascertained by its inhibition by prion small interfering RNA. The phosphorylation of ERK1/2 but not that of stathmin was abolished by the MAPK/ERK kinase 1 inhibitor U0126, whereas both signaling pathways were blocked by the specific inhibitor of the epidermal growth factor receptor AG1478, suggesting the likely recruitment of this receptor upon prion clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号