首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the mammalian brain, kynurenine aminotransferase II (KAT II) and kynurenine 3-monooxygenase (KMO), key enzymes of the kynurenine pathway (KP) of tryptophan degradation, form the neuroactive metabolites kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK), respectively. Although physically segregated, both enzymes use the pivotal KP metabolite l -kynurenine as a substrate. We studied the functional consequences of this cellular compartmentalization in vivo using two specific tools, the KAT II inhibitor BFF 122 and the KMO inhibitor UPF 648. The acute effects of selective KAT II or KMO inhibition were studied using a radiotracing method in which the de novo synthesis of KYNA, and of 3-HK and its downstream metabolite quinolinic acid (QUIN), is monitored following an intrastriatal injection of 3H-kynurenine. In naïve rats, intrastriatal BFF 122 decreased newly formed KYNA by 66%, without influencing 3-HK or QUIN production. Conversely, UPF 648 reduced 3-HK synthesis (by 64%) without affecting KYNA formation. Similar, selective effects of KAT II and KMO inhibition were observed when the inhibitors were applied acutely together with the excitotoxin QUIN, which impairs local KP metabolism. Somewhat different effects of KMO (but not KAT II) inhibition were obtained in rats that had received an intrastriatal QUIN injection 7 days earlier. In these neuron-depleted striata, UPF 648 not only decreased both 3-HK and QUIN production (by 77% and 66%, respectively) but also moderately raised KYNA synthesis (by 27%). These results indicate a remarkable functional segregation of the two pathway branches in the brain, boding well for the development of selective KAT II or KMO inhibitors for cognitive enhancement and neuroprotection, respectively.  相似文献   

2.
Three complementary questions related to the kynurenine pathway and excitotoxicity were addressed in this study: (i) Which extracellular levels of quinolinic acid (QUIN) may be neurotoxic? (ii) Which extracellular levels of kynurenic acid (KYNA) may control excessive NMDA-receptor function? (iii) Can "anti-excitotoxic" levels of KYNA be reached by inhibition of kynurenine-3-hydroxylase (i.e. inhibition of QUIN synthesis and shunts of kynurenine metabolism toward KYNA)? Multifunctional microdialysis probes were used in halothane anaesthetised rats to apply NMDA or QUIN directly to the brain, with or without co-perfusion of KYNA, to record the resulting local depolarisations, and to monitor changes in dialysate KYNA after kynurenine-3-hydroxylase inhibition. QUIN produced concentration-dependent depolarisations with an estimated EC50 (i.e. concentration in the perfusion medium) of 1.22mM. The estimated ED50 for KYNA inhibition of NMDA-responses was 181microM. Kynurenine-3-hydroxylase inhibition (Ro-61-8048, 100mg/kg i.p.) increased dialysate KYNA 11 times (to 33.8nM) but without any reduction of NMDA-responses. These data challenge the notion that extracellular accumulation of endogenous QUIN may contribute to excessive NMDA-receptor activation in some neurological disorders, and the suitability of kynurenine-3-hydroxylase inhibition as an effective anti-excitotoxic strategy.  相似文献   

3.
Summary. The kynurenine pathway of tryptophan degradation contains several metabolites which may influence brain physiology and pathophysiology. The brain content of one of these compounds, kynurenic acid (KYNA), decreases precipitously around the time of birth, possibly to avoid deleterious N-methyl-D-aspartate (NMDA) receptor blockade during the perinatal period. The present study was designed to determine the levels of KYNA, the free radical generator 3-hydroxykynurenine (3-HK), and their common precursor L-kynurenine (L-KYN) between gestational day 16 and adulthood in rat brain and liver. The cerebral activities of the biosynthetic enzymes of KYNA and 3-HK, kynurenine aminotransferases (KATs) I and II and kynurenine 3-hydroxylase, respectively, were measured at the same ages. Additional studies were performed to assess whether and to what extent kynurenines in the immature brain derive from the mother, and to examine the short-term effects of birth asphyxia on brain KYNA and 3-HK levels. The results revealed that 1) the brain and liver content of L-KYN, KYNA and 3-HK is far higher pre-term than postnatally; 2) KAT I and kynurenine 3-hydroxylase activities are quite uniform between E-16 and adulthood, whereas KAT II activity rises sharply after postnatal day 14; 3) during the perinatal period, KYNA, but not L-KYN, may originate in part from the maternal circulation; and 4) oxygen deprivation at birth affects the brain content of both KYNA and 3-HK 1 h but not 24 h later. Received August 31, 1999 Accepted September 20, 1999  相似文献   

4.
The kynurenine pathway of tryptophan catabolism plays an important role in several biological systems affected by aging. We quantified tryptophan and its metabolites kynurenine (KYN), kynurenine acid (KYNA), picolinic acid (PIC) and quinolinic acid (QUIN), and activity of the kynurenine pathway enzymes indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO) and quinolinic acid phosphoribosyltransferase (QPRTase), in the brain, liver and kidney of young, middle-aged and old female Wistar rats. Tryptophan levels and TDO activity decreased in all tissues with age. In contrast, brain IDO activity increased with age, while liver and kidney IDO activity decreased with age. The levels of KYN, KYNA, QUIN and PIC in brain all increased with age, while the levels of KYN in the liver and kidney showed a tendency to decrease. The levels of KYNA in the liver did not change, but the levels of KYNA in the kidney increased. The levels of PIC and QUIN increased significantly in the liver but showed a tendency to decrease in the kidney. QPRTase activity in both brain and liver decreased with age but was elevated in the kidney in middle-aged (12-month-old) rats. These age-associated changes in tryptophan metabolism have the potential to impact upon major biological processes, including lymphocyte function, pyridine (NAD(P)(H)) synthesis and N-methyl-d-aspartate (NMDA)-mediated synaptic transmission, and may therefore contribute to several degenerative changes of the elderly.  相似文献   

5.
Abstract: The incorporation of tritium label into quinolinic acid (QUIN), kynurenic acid (KYNA), and other kynurenine (KYN) pathway metabolites was studied in normal and QUIN-lesioned rat striata after a focal injection of [5-3H]KYN in vivo. The time course of metabolite accumulation was examined 15 min to 4 h after injection of [5-3H]KYN, and the concentration dependence of KYN metabolism was studied in rats killed 2 h after injection of 1.5–1,500 µ M [5-3H]KYN. Labeled QUIN, KYNA, 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid, and xanthurenic acid (XA) were recovered from the striatum in every experiment. Following injection of 15 µ M [5-3H]KYN, a lesion-induced increase in KYN metabolism was noted. Thus, the proportional recoveries of [3H]KYNA (5.0 vs. 1.8%), [3H]3-HK (20.9 vs. 4.5%), [3H]XA (1.5 vs. 0.4%), and [3H]QUIN (3.6 vs. 0.6%) were markedly elevated in the lesioned striatum. Increases in KYN metabolism in lesioned tissue were evident at all time points and KYN concentrations used. Lesion-induced increases of the activities of kynurenine-3-hydroxylase (3.6-fold), kynureninase (7.6-fold), kynurenine aminotransferase (1.8-fold), and 3-hydroxyanthranilic acid oxygenase (4.2-fold) likely contributed to the enhanced flux through the pathway in the lesioned striatum. These data provide evidence for the existence of a functional KYN pathway in the normal rat brain and for a substantial increase in flux after neuronal ablation. This method should be of value for in vivo studies of cerebral KYN pathway function and dysfunction.  相似文献   

6.
《Fly》2013,7(2):117-120
Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)—the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.  相似文献   

7.
Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.  相似文献   

8.
Oxidation of tryptophan to kynurenine and 3-hydroxykynurenine (3-HK) is the major catabolic pathway in mosquitoes. However, 3-HK is oxidized easily under physiological conditions, resulting in the production of reactive radical species. To overcome this problem, mosquitoes have developed an efficient mechanism to prevent 3-HK from accumulating by converting this chemically reactive compound to the chemically stable xanthurenic acid. Interestingly, 3-HK is a precursor for the production of compound eye pigments during the pupal and early adult stages; consequently, mosquitoes need to preserve and transport 3-HK for compound eye pigmentation in pupae and adults. This review summarizes the tryptophan oxidation pathway, compares and contrasts the mosquito tryptophan oxidation pathway with other model species, and discusses possible driving forces leading to the functional adaptation and evolution of enzymes involved in the mosquito tryptophan oxidation pathway.  相似文献   

9.
Abstract: Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood–brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes. We hypothesize that increased kynurenine pathway metabolism after ischemia reflects the presence of macrophages and other reactive cell populations at sites of brain injury.  相似文献   

10.
Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington's disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted?at?two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders.  相似文献   

11.
Abstract: Quinolinic acid (QUIN) kills neurons by activation of NMDA receptors that are accessed via the extracellular fluid (ECF). In vivo microdialysis was employed to quantify the dynamics of ECF QUIN levels. [13C7]QUIN was perfused through the probe for in vivo calibration to accurately quantify ECF QUIN concentrations. Osmotic pumps infused [2H3]QUIN subcutaneously to quantify blood contributions to ECF and tissue levels. Local QUIN production rates and influx and efflux rates across the blood-brain barrier were calculated from the extraction fraction of [13C7]QUIN, probe geometry, tissue diffusion coefficients, the extracellular volume fraction, and [2H3]QUIN/QUIN ratios in blood and dialysates. In normal brain, 85% of ECF QUIN levels (110 n M ) originated from blood, whereas 59% of tissue homogenate QUIN (130 pmol/g) originated from local de novo synthesis. During systemic immune activation (intraperitoneal injection of endotoxin), blood QUIN levels increased (10.2-fold) and caused a rise in homogenate (10.8-fold) and ECF (18.5-fold) QUIN levels with an increase in the proportions of QUIN derived from blood. During CNS inflammation (local infusion of endotoxin), increases in brain homogenate (246-fold) and ECF (66-fold) QUIN levels occurred because of an increase in local synthesis rate (146-fold) and a reduction in efflux/influx ratio (by 53%). These results demonstrate that brain homogenate measures are a reflection of ECF concentrations, although there are quantitative differences in the values obtained. The mechanisms that maintain ECF QUIN levels at low values cannot do so when there are large increases in local brain synthesis or when there are large elevations in blood QUIN concentrations.  相似文献   

12.
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.  相似文献   

13.
1. Kynurenic (KYNA) and quinolinic (QUIN) acids are neuroactive tryptophan metabolites formed along the kynurenine pathway: the first is considered a non-competitive antagonist and the second an agonist of glutamate receptors of NMDA type. The affinity of these compounds for glutamate receptors is, however, relatively low and does not explain KYNA neuroprotective actions in models of post-ischemic brain damage. 2. We evaluated KYNA effects on the release of fibroblast growth factor (FGF)-1, a potent neurotrophic cytokine. Because KYNA exhibits a neuroprotective profile in vitro and in vivo, we anticipated that it could function as an autocrine/paracrine inducer of FGF-1 release. Studies were performed in several models of FGF-1 secretion (FGF-1 transfected NIH 3T3 cells exposed to heat shock, A375 melanoma cells exposed to serum starvation, growth factor deprived human endothelial cells). To our surprise, KYNA, at low concentration, inhibited FGF-1 release in all cellular models. QUIN, a compound having opposite effects on glutamate receptors, also reduced this release, but its potency was significantly lower than that of KYNA. 3. KYNA and QUIN also displayed a major stimulatory effect on the proliferation rate of mouse microglia and human glioblastoma cells, in vitro. 4. Our data suggest that minor changes of local KYNA concentration may modulate FGF-1 release, cell proliferation, and ultimately tissue damage in different pathological conditions.  相似文献   

14.
Abstract: Human immunodeficiency virus (HIV)-1-associated dementia is a frequent consequence of HIV infection and is associated with neuronal deficits. Increased concentrations of the kynurenine pathway metabolites 3-hydroxykynurenine (3-HK) and quinolinic acid (QA) may contribute to this neuronal damage. We measured 3-HK concentrations and the activity of its catabolising enzyme, 3-hydroxykynureninase, in postmortem brain tissue from eight controls and 32 HIV-positive patients, including a group that exhibited dementia. 3-HK concentrations were significantly increased (over threefold) in the HIV-positive group when compared with controls. This increase was greater in those patients with dementia, but it was still apparent in the nondemented cases. 3-Hydroxykynureninase activity was significantly increased in the HIV-infected group compared with the control values. The effect was apparent in both nondementia and dementia cases, although the latter showed a slightly greater increase. The 3-HK content increase is thus unrelated to a reduction in activity of this enzyme and is likely to reflect an overall increase in the kynurenic metabolic pathway. Elevated levels of the neurotoxin 3-HK may contribute to the neuronal deficits underlying HIV-associated dementia.  相似文献   

15.
The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair.  相似文献   

16.
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.  相似文献   

17.
Abstract

Kynurenine, a metabolite of tryptophan along the ‘kynurenine pathway’, is at a branch point of the pathway which can lead to the synthesis of both quinolinic acid (QUIN) and kynurenic acid (KYNA). KYNA is an antagonist of glutamate receptors; however, QUIN is a selective agonist of NMDA receptors, and has been shown to act as an excitotoxic agent. A high QUIN/KYNA ratio has been implicated in a variety of neurological diseases in which excitotoxic neuronal cell death is found, e.g. AIDS-related dementia, stroke, etc. Inhibiting the key enzymes of this pathway (i.e. kynureninase and kynurenine 3-hydroxylase) would lower the QUIN/KYNA ratio, which may potentially have neuroprotective effects. We have developed high through-put assays for kynurenine pathway enzymes which allow us to screen extracts from marine organisms for selective enzyme inhibitors. Active metabolites are purified, isolated and identified by HPLC, high-field NMR and mass spectral techniques. Extracts from a sponge of the Aka species were found to contain a selective inhibitor of kynureninase. We have recently purified and identified the active principal as being serotonin sulfate. Related indoleamines, serotonin and 5-hydroxyindoleacetic acids are inactive. This finding may be suggestive of a novel interaction between the serotoninergic and excitatory amino acid pathways.  相似文献   

18.
Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to 32P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca2+/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca2+ quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca2+ influx through voltage-dependent Ca2+ channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative disorders.  相似文献   

19.
20.
Abstract: 3-Hydroxykynurenine (3-HK) is a potential endogenous neurotoxin whose increased levels have been described in several neurodegenerative disorders. Here, we characterized in vitro neurotoxicity of 3-HK. Of the tested kynurenine pathway metabolites, only 3-HK, and to a lesser extent 3-hydroxyanthranilic acid, were toxic to primary cultured striatal neurons. 3-HK toxicity was inhibited by various antioxidants, indicating that the generation of reactive oxygen species is essential to the toxicity. 3-HK-induced neuronal cell death showed several features of apoptosis, as determined by the blockade by macromolecule synthesis inhibitors, and by the observation of cell body shrinkage with nuclear chromatin condensation and fragmentation. In addition, 3-HK toxicity was dependent on its cellular uptake via transporters for large neutral amino acids, because uptake inhibition blocked the toxicity. Cortical and striatal neurons were much more vulnerable to 3-HK toxicity than cerebellar neurons, which may be attributable to the differences in transporter activities of these neurons. These results indicate that 3-HK, depending on transporter-mediated cellular uptake and on intracellular generation of oxidative stress, induces neuronal cell death with brain region selectivity and with apoptotic features, which may be relevant to pathology of neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号