首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The structural changes in the heme macrocycle and substituents caused by binding of Ca(2+) to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca(2+)-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca(2+) or Mg(2+). This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca(2+) binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca(2+) binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.  相似文献   

3.
Atkinson SJ  Mowat CG  Reid GA  Chapman SK 《FEBS letters》2007,581(20):3805-3808
A c-type cytochrome from Shewanella oneidensis MR-1, containing eight hemes, has been previously designated as an octaheme tetrathionate reductase (OTR). The structure of OTR revealed that the active site contains an unusual lysine-ligated heme, despite the presence of a CXXCH motif in the sequence that would predict histidine ligation. This lysine ligation has been previously observed only in the pentaheme nitrite reductases, suggesting that OTR may have a possible role in nitrite reduction. We have now shown that OTR is an efficient nitrite and hydroxylamine reductase and that ammonium ion is the product. These results indicate that OTR may have a role in the biological nitrogen cycle.  相似文献   

4.
The macroscopic and microscopic redox potentials of the four hemes of the small tetraheme cytochrome c from Shewanella oneidensis were determined. The microscopic redox potentials show that the order of reduction is from hemes in the C-terminal domain (hemes 3 and 4) to the N-terminal domain (heme 1), demonstrating the polarization of the tetraheme chain during reduction. This makes heme 4 the most efficient electron delivery site. Furthermore, multi-step reduction of other redox centers through either heme 4 or heme 3 is shown to be possible. This has provided new insights into the two-electron reduction of the flavin in the homologous flavocytochrome c-fumarate reductase.  相似文献   

5.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5?μmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1.  相似文献   

6.
A modified mariner transposon, miniHimar RB1, was generated to mutagenize cells of the metal-reducing bacterium Shewanella oneidensis. The use of this transposon led to the isolation of stable mutants and allowed rapid identification of disrupted genes. Fifty-eight mutants, including BG104 and BG148 with transposon insertions in the cytochrome c maturation genes ccmC and ccmF1, respectively, were analyzed. Both mutants were deficient in anaerobic respiration and cytochrome c production.  相似文献   

7.
Interaction of cytochrome c peroxidase with cytochrome c   总被引:1,自引:0,他引:1  
J J Leonard  T Yonetani 《Biochemistry》1974,13(7):1465-1468
  相似文献   

8.
Bacteria of the genus Shewanella contain an abundant small tetraheme cytochrome in their periplasm when growing anaerobically. Data collected for the protein isolated from S. oneidensis MR-1 and S. frigidimarina indicate differences in the order of oxidation of the hemes. A detailed thermodynamic characterization of the cytochrome from S. oneidensis MR-1 in the physiological pH range was performed, with data collected in the pH range 5.5–9.0 from NMR experiments using partially oxidized samples and from redox titrations followed by visible spectroscopy. These data allow the parsing of the redox and redox–protonation interactions that occur during the titration of hemes. The results show that electrostatic effects dominate the heme–heme interactions, in agreement with modest redox-linked structural modifications, and protonation has a considerable influence on the redox properties of the hemes in the physiological pH range. Theoretical calculations using the oxidized and reduced structures of this protein reveal that the bulk redox–Bohr effect arises from the aggregate fractional titration of several of the heme propionates. This detailed characterization of the thermodynamic properties of the cytochrome shows that only a few of the multiple microscopic redox states that the protein can access are significantly populated at physiological pH. On this basis a functional pathway for the redox activity of the small tetraheme cytochrome from S. oneidensis MR-1 is proposed, where reduction and protonation are thermodynamically coupled in the physiological range. The differences between the small tetraheme cytochromes from the two organisms are discussed in the context of their biological role.  相似文献   

9.
In this work, the actions of bovine heart cardiolipin, synthetic tetraoleyl cardiolipin, and a nonspecific anionic detergent sodium dodecyl sulfate (SDS) on cytochrome c (Cyt c) peroxidase activity recorded by chemiluminescence in the presence of luminol and on the Fe...S(Met80) bond whose presence was estimated by a weak absorption band amplitude with peak at 695-700 nm (A(695)) were compared. A strict concurrency between Fe...S(Met80) breaking (A(695)) and cytochrome peroxidase activity enhancement was shown to exist at cardiolipin/Cyt c and SDS/Cyt c molar ratios of 0 : 1 to 50 : 1 (by chemiluminescence). Nevertheless, when A(695) completely disappeared, Cyt c peroxidase activity under the action of cardiolipin was 20 times more than that under the action of SDS, and at low ligand/protein molar ratios (=4), SDS failed to activate peroxidase activity while cardiolipin enhanced Cyt c peroxidase activity 16-20-fold. A(695) did not change on Cyt c binding with liposomes consisting of tetraoleyl cardiolipin and phosphatidylcholine (1 : 10 : 10), while peroxidase activity was enhanced by a factor of 8. Breaking of 70% of the Fe...S(Met80) bonds resulted in only threefold enhancement of peroxidase activity. Cardiolipin-activated Cyt c peroxidase activity was reduced by high ionic strength solution (1 M KCl). The aggregated data suggest that cardiolipin activating action is caused, first, by a nonspecific effect of Fe...S(Met80) breaking as the result of conformational changes in the protein globule caused by the protein surface electrostatic recharging by an anionic amphiphilic molecule, and second, by a specific acceleration of the peroxidation reaction which is most likely due to enhanced heme accessibility for H(2)O(2) as a result of the hydrophobic interaction between cardiolipin and cytochrome.  相似文献   

10.
11.
A recombinant form of the prototypic diheme bacterial cytochrome c peroxidase (BCCP) from Pseudomonas aeruginosa (PsaCCP) has been expressed in Escherichia coli and purified to homogeneity. This material was used to carry out the first integrated biochemical, spectroscopic and structural investigation of the factors leading to reductive activation of this class of enzymes. A single, tightly bound, Ca2+ ion (K = 3 x 10(10) M-1) found at the domain interface of both the fully oxidized and mixed-valence forms of the enzyme is absolutely required for catalytic activity. Reduction of the electron-transferring (high-potential) heme in the presence of Ca2+ ions triggers substantial structural rearrangements around the active-site (low-potential) heme to allow substrate binding and catalysis. The enzyme also forms a mixed-valence state in the absence of Ca2+ ions, but a combination of electronic absorption, and EPR spectroscopies suggests that under these circumstances the low potential heme remains six-coordinate, unable to bind substrate and therefore catalytically inactive. Our observations strongly suggest that the two mixed-valence forms of native PsaCCP reported previously by Foote and colleagues (Foote, N., Peterson, J., Gadsby, P., Greenwood, C., and Thomson, A. (1985) Biochem. J. 230, 227-237) correspond to the Ca2+-loaded and -depleted forms of the enzyme.  相似文献   

12.
13.
We have used microcalorimetry and analytical ultracentrifugation to test the model proposed in Pettigrew et al. [(1999) J. Biol. Chem. 274, 11383-11389] for the binding of small cytochromes to the cytochrome c peroxidase of Paracoccus denitrificans. Both methods reveal complexity in behavior due to the presence of a monomer/dimer equilibrium in the peroxidase. In the presence of either Ca(2+), or higher ionic strength, this equilibrium is shifted to the dimer. Experiments to study complex formation with redox partners were performed in the presence of Ca(2+) in order to simplify the equilibria that had to be considered. The results of isothermal titration calorimetry reveal that the enzyme can bind two molecules of horse cytochrome c with K(d) values of 0.8 microM and 2.5 microM (at 25 degrees C, pH 6.0, I = 0.026) but only one molecule of Paracoccus cytochrome c-550 with a K(d) of 2.8 microM, molar binding ratios confirmed by ultracentrifugation. For both horse cytochrome c and Paracoccus cytochrome c-550, the binding is endothermic and driven by a large entropy change, a pattern consistent with the expulsion of water molecules from the interface. For horse cytochrome c, the binding is weakened 3-fold at I = 0.046 M due to a smaller entropy change, and this is associated with an increase in enzyme turnover. In contrast, neither the binding of cytochrome c-550 nor its oxidation rate is affected by raising the ionic strength in this range. We propose that, at low ionic strength, horse cytochrome c is trapped in a nonproductive orientation on a broad capture surface of the peroxidase.  相似文献   

14.
Shewanella oneidensis is able to respire on a variety of organic and inorganic substrates, including nitrate and nitrite. Conversion of nitrate to nitrite and nitrite to ammonium is catalysed by periplasmic nitrate and nitrite reductases (NAP and NRF) respectively. Global regulator Crp (c yclic AMP r eceptor p rotein) is essential for growth of S. oneidensis on both nitrate and nitrite. In this study, we discovered that crp mutants are not only severely deficient in nitrate or nitrite respiration, but are also hypersensitive to nitrite. This hypersusceptibility phenotype is independent of nitrite respiration. Using random transposon mutagenesis, we obtained 73 Δcrp suppressor strains resistant to nitrite. Transposon insertion sites in 24 suppressor strains were exclusively mapped in the region upstream of the cyd operon encoding a cytochrome bd oxidase, resulting in expression of the operon now driven by a Crp‐independent promoter. Further investigation indicated that the promoter in suppressor strains comes from the transposon. Mutational analysis of the cydB gene (encoding the essential subunit II of the bd oxidase) confirmed that the cytochrome bd oxidase confers nitrite resistance to S. oneidensis.  相似文献   

15.
Cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c(3) gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.  相似文献   

16.
Jasion VS  Poulos TL 《Biochemistry》2012,51(12):2453-2460
Leishmania major peroxidase (LmP) exhibits both ascorbate and cytochrome c peroxidase activities. Our previous results illustrated that LmP has a much higher activity against horse heart cytochrome c than ascorbate, suggesting that cytochrome c may be the biologically important substrate. To elucidate the biological function of LmP, we have recombinantly expressed, purified, and determined the 2.08 ? crystal structure of L. major cytochrome c (LmCytc). Like other types of cytochrome c, LmCytc has an electropositive surface surrounding the exposed heme edge that serves as the site of docking with redox partners. Kinetic assays performed with LmCytc and LmP show that LmCytc is a much better substrate for LmP than horse heart cytochrome c. Furthermore, unlike the well-studied yeast system, the reaction follows classic Michaelis-Menten kinetics and is sensitive to an increasing ionic strength. Using the yeast cocrystal as a control, protein-protein docking was performed using Rosetta to develop a model for the binding of LmP and LmCytc. These results suggest that the biological function of LmP is to act as a cytochrome c peroxidase.  相似文献   

17.
The primary structure of Pseudomonas cytochrome c peroxidase is presented. The intact protein was fragmented with cyanogen bromide into five fragments; partial cleavage was observed at a Met-His bond of the protein. The primary structure was established partly by automatic Edman degradations, partly by manual sequencing of peptides obtained with trypsin, thermolysin, chymotrypsin, pepsin, subtilisin and Staphylococcus aureus V8 endopeptidase. The order of the cyanogen bromide fragments was further confirmed by overlapping peptides obtained by specific cleavage of the whole protein. Pseudomonas cytochrome c peroxidase consists of 302 amino acid residues giving a calculated Mr of 33 690.  相似文献   

18.
Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c(3) but define a new folding motif for small multiheme cytochromes c.  相似文献   

19.
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism.  相似文献   

20.
The high potential heme site of Pseudomonas cytochrome c peroxidase has His and Met as ligands. On reduction, the Fe-met bond becomes photosensitive. Following photolysis, the bond reforms with a half-time of 35 ps. The low potential heme peroxidatic site of the fully reduced enzyme has been shown to bind to a range of ligands. The compounds with carbon monoxide, methyl, ethyl, n-butyl, and t-butyl isonitriles have been investigated by laser flash photolysis. All are photosensitive and show different degrees of geminate recombination of ligand in the picosecond and nanosecond time ranges. Carbon monoxide shows the least effect. The three straight-chain isonitriles show about 50% geminate recombination with half-times of the order of 10 ns. t-Butyl isonitrile shows more and faster recombination. These results imply considerable freedom of movement within the active site for the smaller ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号