首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allelic exclusion prevents pre-B cells from generating more than one functional H chain, thereby ensuring the formation of a unique pre-BCR. The signaling processes underlying allelic exclusion are not clearly understood. IL-7R-dependent signals have been clearly shown to regulate the accessibility of the Ig H chain locus. More recent work has suggested that pre-BCR-dependent attenuation of IL-7R signaling returns the H chain loci to an inaccessible state; this process has been proposed to underlie allelic exclusion. Importantly, this model predicts that preventing pre-BCR-dependent down-regulation of IL-7R signaling should interfere with allelic exclusion. To test this hypothesis, we made use of transgenic mice that express a constitutively active form of STAT5b (STAT5b-CA). STAT5b-CA expression restores V(D)J recombination in IL-7R(-/-) B cells, demonstrating that IL-7 regulates H chain locus accessibility and V(D)J recombination via STAT5 activation. To examine the effects of constitutively active STAT5b on allelic exclusion, we crossed STAT5b-CA mice (which express the IgM(b) allotype) to IgM(a) allotype congenic mice. We found no difference in the percentage of IgM(a)/IgM(b)-coexpressing B cells in STAT5b-CA vs littermate control mice; identical results were observed when crossing STAT5b-CA mice with hen egg lysozyme (HEL) H chain transgenic mice. The HEL transgene enforces allelic exclusion, preventing rearrangement of endogenous H chain genes; importantly, rearrangement of endogenous H chain genes was suppressed to a similar degree in STAT5b-CA vs HEL mice. Thus, attenuation of IL-7R/STAT5 signaling is not required for allelic exclusion.  相似文献   

2.
3.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

4.
Repeated Ag exposure results in a shift in the time course of contact hypersensitivity (CH) from a typical delayed-type to an immediate-type response followed by a late phase reaction. Chronic CH responses are clinically relevant to human skin allergic diseases, such as atopic dermatitis, that are usually caused by repeated stimulation with environmental Ags. Chronic inflammatory responses result in part from infiltrating leukocytes. To determine the role of leukocyte adhesion molecules in chronic inflammation, chronic CH responses were assessed in mice lacking L-selectin, ICAM-1, or both adhesion molecules. Following repeated hapten sensitization for 24 days at 2-day intervals, wild-type littermates developed an immediate-type response at 30 min after elicitation, followed by a late phase reaction. By contrast, loss of ICAM-1, L-selectin, or both, eliminated the immediate-type response and inhibited the late phase reaction. Similar results were obtained when wild-type littermates repeatedly exposed to hapten for 22 days were treated with mAbs to L-selectin and/or ICAM-1 before the elicitation on day 24. The lack of an immediate-type response on day 24 paralleled a lack of mast cell accumulation after 30 min of elicitation and decreased serum IgE production. Repeated Ag exposure in wild-type littermates resulted in increased levels of serum L-selectin, a finding also observed in atopic dermatitis patients. The current study demonstrates that L-selectin and ICAM-1 cooperatively regulate the induction of the immediate-type response by mediating mast cell accumulation into inflammatory sites and suggests that L-selectin and ICAM-1 are potential therapeutic targets for regulating human allergic reactions.  相似文献   

5.
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium.  相似文献   

6.
Langerhans cell (LC) migration from epidermis to draining lymph node is a critical first step in cutaneous immune responses. Both TNF-alpha and IL-1 beta are important signals governing this process, but the potential regulatory role of IL-1 alpha processing by caspase-1 is unknown. In wild-type (WT) mice, application of the contact allergens 2,4-dinitrofluorobenzine and oxazolone lead to a marked reduction in epidermal LC numbers, but in caspase-1-deficient mice this reduction was not observed. Moreover, although intradermal injection of TNF-alpha (50 ng) induced epidermal LC migration in WT mice, this cytokine failed to induce LC migration in caspase-1-deficient mice. Intradermal IL-1 beta (50 ng) caused a similar reduction in epidermal LC numbers in both WT and caspase-1-deficient mice, indicating that, given an appropriate signal, caspase-1-deficient epidermal LC are capable of migration. Contact hypersensitivity to both 2,4-dinitrofluorobenzine and oxazolone was inhibited in caspase-1-deficient mice, indicating a functional consequence of the LC migration defect. In organ culture the caspase-1 inhibitor Ac-YVAD-cmk, but not control peptide, potently inhibited the epidermal LC migration that occurs in this system, and reduced spontaneous migration of LC was observed in skin derived from caspase-1-deficient mice. Moreover, Ac-YVAD-cmk applied to BALB/c mouse skin before application of contact sensitizers inhibited LC migration and contact hypersensitivity in vivo. Taken together, these data indicate that caspase-1 may play a central role in the regulation of LC migration and suggest that the activity of this enzyme is amenable to control by specific inhibitors both in vivo and in vitro.  相似文献   

7.
Hapten sensitization through UV-exposed skin induces systemic immune suppression, which is experimentally demonstrated by inhibition of contact hypersensitivity (CHS). Although this UV-induced effect has been shown to be mediated by inhibition of the afferent phase of the CHS, the UV effects on the efferent (elicitation) phase remain unknown. In this study, UV effects on endothelial ICAM-1 expression at elicitation sites were first examined. Mice were sensitized by hapten application onto UV-exposed back skin, and ears were challenged 5 days later. ICAM-1 up-regulation at nonirradiated elicitation sites following hapten challenge was eliminated by UV exposure on sensitization sites distant from elicitation sites. To assess whether loss of the ICAM-1 up-regulation at elicitation sites contributed to UV-induced immunosuppression, we examined CHS responses in UV-exposed ICAM-1-deficient (ICAM-1(-/-)) mice that genetically lacked the ICAM-1 up-regulation. ICAM-1(-/-) mice exhibited reduced CHS responses without UV exposure, but UV exposure did not further reduce CHS responses in ICAM-1(-/-) mice. Furthermore, ICAM-1 deficiency did not affect the afferent limb, because ICAM-1(-/-) mice had normal generation of hapten-specific suppressor and effector T cells. This UV-induced immunosuppression was associated with a lack of TNF-alpha production after Ag challenge at elicitation sites. Local TNF-alpha injection before elicitation abrogated the UV-induced CHS inhibition with increased endothelial ICAM-1 expression. TNF-alpha production at elicitation sites was down-regulated by IL-10, a possible mediator produced by hapten-specific suppressor T cells that are generated by UV exposure. These results indicate that UV exposure inhibits CHS by abrogating up-regulation of endothelial ICAM-1 expression after Ag challenge at elicitation sites.  相似文献   

8.
One of the earliest manifestations of anteroposterior pattering in the developing brain is the restricted expression of Six3 and Irx3 in the anterior and posterior forebrain, respectively. Consistent with the role of Wnts as posteriorizing agents in neural tissue, we found that Wnt signaling was sufficient to induce Irx3 and repress Six3 expression in forebrain explants. The position of the zona limitans intrathalamica (zli), a boundary-cell population that develops between the ventral (vT) and dorsal thalamus (dT), is predicted by the apposition of Six3 and Irx3 expression domains. The expression patterns of several inductive molecules are limited by the zli, including Wnt3, which is expressed posterior to the zli in the dT. Wnt3 and Wnt3a were sufficient to induce the dT marker Gbx2 exclusively in explants isolated posterior to the presumptive zli. Blocking the Wnt response allowed the induction of the vT-specific marker Dlx2 in prospective dT tissue. Misexpression of Six3 in the dT induced Dlx2 expression and inhibited the expression of both Gbx2 and Wnt3. These results demonstrate a dual role for Wnt signaling in forebrain development. First, Wnts directed the initial expression of Irx3 and repression of Six3 in the forebrain, delineating posterior and anterior forebrain domains. Later, continued Wnt signaling resulted in the induction of dT specific markers, but only in tissues that expressed Irx3.  相似文献   

9.
10.
The polo gene of Drosophila melanogaster is the founding member of the polo-like kinase family which is conserved among eukaryotes. POLO has been implicated in the organisation and function of the mitotic apparatus. Furthermore, POLO has been shown to be required for normal spermatogenesis. To characterize further the role of POLO in spermatogenesis, polo mutants were analysed by immunostaining with specific antibodies and phase contrast microscopy. Immunofluorescence shows that POLO localises to the centrosomes, the centromere/kinetochore and the spindle midzone. The meiotic phenotype of various mutant allelic combinations was also studied in detail. Observation of mutant live testes indicates cytological abnormalities in all meiotic cell types, including variable DNA content and multipolar spindles. Primary spermatocytes in polo mutant testes contain an abnormal DNA content, suggesting failure of chromosome segregation during gonial division. Immunostaining of polo mutant cells with α-tubulin shows several abnormalities of the meiotic spindle, including a significantly reduced central spindle. Our results suggest that polo has multiple functions during spermatogenesis. Received: 5 August 1998; in revised form: 3 September 1998 / Accepted: 3 September, 1998  相似文献   

11.
Interleukin (IL)-33 (or IL-1F11) was recently identified as a ligand for the orphan IL-1 receptor family member T1/ST2 (ST2). IL-33 belongs to the IL-1 cytokine family and, upon binding to ST2, induces intracellular signals similar to those utilized by IL-1. The effects of other IL-1 family cytokines are mediated by their binding to a specific receptor and the recruitment of a co-receptor required for elicitation of signaling. The aim of this study was to characterize the co-receptor involved in IL-33 signaling. Immunoprecipitation confirmed that IL-33 specifically binds ST2 and revealed that cellular IL-1 receptor accessory protein (AcP) associates with ST2 in a ligand-dependent manner. Receptor binding measurements demonstrated that the affinity of mouse (m)IL-33 for ST2 is increased by 4-fold in presence of AcP. IL-33 dose-dependently stimulated IL-6 secretion from wild-type (WT) mast cells, while no effect of IL-33 was observed with mast cells derived from AcP-deficient mice. Finally, soluble (s)ST2-Fc and sAcP-Fc acted synergistically to inhibit IL-33 activity. These observations identify AcP as a shared co-receptor within the IL-1 family that is essential for IL-33 signaling and suggest a novel role for sAcP in modulating the activity of IL-33.  相似文献   

12.
Allergen-induced contact hypersensitivity (CHS) is a T cell-mediated delayed-type immune response which has been considered to be primarily mediated by CD8+ T cytotoxic type I (Tc1) cells. IFN-gamma, the prototype Tc1 (Th1) cytokine, has been implicated as the primary inflammatory cytokine for CHS. In this study, we demonstrate that neutralization of IL-17 rather than IFN-gamma suppresses the elicitation of CHS. The suppression does not result from inhibition of the proliferation of allergen-activated T cells. Allergen sensitization induces the development of distinct CD8+ T cell subpopulations that produce IFN-gamma or IL-17. Although CD8+ IL-17-producing cells are stimulated by IL-23, they are inhibited by IL-12, a prototypical stimulator of IFN-gamma-producing Tc1 cells. This indicates that CD8+ IL-17-producing cells are distinct from Tc1 cells and are important in effector functions at the elicitation of CHS. These studies provide insights into a novel mechanism for CHS.  相似文献   

13.
IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Although regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. To investigate the role of IRAK-4 kinase function in vivo, "knock-in" mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase-deficient IRAK-4 protein (IRAK-4 KD). IRAK-4 kinase was rendered inactive by mutating the conserved lysine residues in the ATP pocket essential for coordinating ATP. Analyses of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice demonstrate lack of cellular responsiveness to stimulation with IL-1beta or a Toll-like receptor 7 (TLR7) agonist. IRAK-4 kinase deficiency prevents the recruitment of IRAK-1 to the IL-1 receptor complex and its subsequent phosphorylation and degradation. IRAK-4 KD cells are severely impaired in NFkappaB, JNK, and p38 activation in response to IL-1beta or TLR7 ligand. As a consequence, IL-1 receptor/TLR7-mediated production of cytokines and chemokines is largely absent in these cells. Additionally, microarray analysis identified IL-1beta response genes and revealed that the induction of IL-1beta-responsive mRNAs is largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1 receptor (IL-1R)/TLR7-mediated induction of inflammatory responses.  相似文献   

14.
Activation of vanilloid receptor (VR1) by protein kinase C (PKC) was investigated in cells ectopically expressing VR1 and primary cultures of dorsal root ganglion neurons. Submicromolar phorbol 12,13-dibutyrate (PDBu), which stimulates PKC, acutely activated Ca(2+) uptake in VR1-expressing cells at pH 5.5, but not at mildly acidic or neutral pH. PDBu was antagonized by bisindolylmaleimide, a PKC inhibitor, and ruthenium red, a VR1 ionophore blocker, but not capsazepine, a vanilloid antagonist indicating that catalytic activity of PKC is required for PDBu activation of VR1 ion conductance, and is independent of the vanilloid site. Chronic PDBu dramatically down-regulated PKC(alpha) in dorsal root ganglion neurons or the VR1 cell lines, whereas only partially influencing PKCbeta, -delta, -epsilon, and -zeta. Loss of PKC(alpha) correlated with loss of response to acute re-challenge with PDBu. Anandamide, a VR1 agonist in acidic conditions, acts additively with PDBu and remains effective after chronic PKC down-regulation. Thus, two independent VR1 activation pathways can be discriminated: (i) direct ligand binding (anandamide, vanilloids) or (ii) extracellular ligands coupled to PKC by intracellular signaling. Experiments in cell lines co-expressing VR1 with different sets of PKC isozymes showed that acute PDBu-induced activation requires PKC(alpha), but not PKC(epsilon). These studies suggest that PKC(alpha) in sensory neurons may elicit or enhance pain during inflammation or ischemia.  相似文献   

15.
16.
17.
The Drosophila importin-alpha3 gene was isolated through its interaction with the large subunit of the DNA polymerase alpha in a two-hybrid screen. The predicted protein sequence of Importin-alpha3 is 65-66% identical to those of the human and mouse importin-alpha3 and alpha4 and 42.7% identical to that of Importin-alpha2 (Oho31/Pendulin), the previously reported Drosophila homologue. Both Importin-alpha3 and Importin-alpha2 interact with similar subsets of proteins in vitro, one of which is Ketel, the importin-beta homologue of Drosophila. importin-alpha3 is an essential gene, whose encoded protein is expressed throughout development. During early embryogenesis, Importin-alpha3 accumulates at the nuclear membrane of cleavage nuclei, whereas after blastoderm formation it is characteristically found within the interphase nuclei. Nuclear localisation is seen in several tissues throughout subsequent development. During oogenesis its concentration within the nurse cell nuclei increases during stages 7-10, concomitant with a decline in levels in the oocyte nucleus. Mutation of importin-alpha3 results in lethality throughout pupal development. Surviving females are sterile and show arrest of oogenesis at stages 7-10. Thus, Importin-alpha3-mediated nuclear transport is essential for completion of oogenesis and becomes limiting during pupal development. Since they have different expression patterns and subcellular localisation profiles, we suggest that the two importin-alpha homologues are not redundant in the context of normal Drosophila development.  相似文献   

18.
Interleukin (IL)-13 is a major inducer of fibrosis in many chronic infectious and autoimmune diseases. In studies of the mechanisms underlying such induction, we found that IL-13 induces transforming growth factor (TGF)-beta(1) in macrophages through a two-stage process involving, first, the induction of a receptor formerly considered to function only as a decoy receptor, IL-13Ralpha(2). Such induction requires IL-13 (or IL-4) and tumor necrosis factor (TNF)-alpha. Second, it involves IL-13 signaling through IL-13Ralpha(2) to activate an AP-1 variant containing c-jun and Fra-2, which then activates the TGFB1 promoter. In vivo, we found that prevention of IL-13Ralpha(2) expression reduced production of TGF-beta(1) in oxazolone-induced colitis and that prevention of IL-13Ralpha(2) expression, Il13ra2 gene silencing or blockade of IL-13Ralpha(2) signaling led to marked downregulation of TGF-beta(1) production and collagen deposition in bleomycin-induced lung fibrosis. These data suggest that IL-13Ralpha(2) signaling during prolonged inflammation is an important therapeutic target for the prevention of TGF-beta(1)-mediated fibrosis.  相似文献   

19.
IL-12 initiates Th1 cell development and cell-mediated immunity, but whether IL-12 contributes to the maintenance of a Th1 response is unclear. To address this question, we infected IL-12 p40-/- C57BL/6 mice with Leishmania major, an intracellular protozoan parasite controlled by a cell-mediated immune response, and simultaneously administered IL-12. Whereas untreated p40-/- mice developed an uncontrolled infection, p40-/- mice treated with IL-12 for the first 2 or 4 wk of infection developed a Th1 response and resolved their lesions. However, the induction of this protective Th1 cell response by IL-12 treatment was not associated with long term immunity. We observed that on rechallenge in the absence of IL-12, the mice exhibited a susceptible phenotype. In addition, without rechallenge, lesions in the IL-12-treated p40-/- mice developed several weeks after cessation of IL-12 treatment. In both cases, disease was associated with the loss of a Th1 response and the development of a Th2 response. Our observations are not limited to the C57BL/6 strain, because IL-12 treatment was also unable to provide lasting protection to p40-/- BALB/c mice. Finally, we found that although Th1 cells from healed wild-type C57BL/6 mice adoptively transferred protection to L. major-infected RAG-/- mice, they were unable to protect p40-/- mice. In conclusion, these studies provide the first demonstration that IL-12 is required not only to initiate Th1 cell development but also throughout infection to maintain a Th1 cell response and resistance to L. major.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号