首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

3.
Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.  相似文献   

4.
The Th17 cytokine, IL-22, regulates host immune responses to extracellular pathogens. Whether IL-22 plays a role in viral infection, however, is poorly understood. We report here that Il22(-/-) mice were more resistant to lethal West Nile virus (WNV) encephalitis, but had similar viral loads in the periphery compared to wild type (WT) mice. Viral loads, leukocyte infiltrates, proinflammatory cytokines and apoptotic cells in the central nervous system (CNS) of Il22(-/-) mice were also strikingly reduced. Further examination showed that Cxcr2, a chemokine receptor that plays a non-redundant role in mediating neutrophil migration, was significantly reduced in Il22(-/-) compared to WT leukocytes. Expression of Cxcr2 ligands, cxcl1 and cxcl5, was lower in Il22(-/-) brains than wild type mice. Correspondingly, neutrophil migration from the blood into the brain was attenuated following lethal WNV infection of Il22(-/-) mice. Our results suggest that IL-22 signaling exacerbates lethal WNV encephalitis likely by promoting WNV neuroinvasion.  相似文献   

5.
Protective immunity against Helicobacter pylori infection in mice has been associated with a strong Th1 response, involving IL-12 as well as IFN-gamma, but recent studies have also demonstrated prominent eosinophilic infiltration, possibly linked to local Th2 activity in the gastric mucosa. In this study we investigated the role of IL-18, because this cytokine has been found to be a coregulator of Th1 development as well as involved in Th2-type responses with local eotaxin production that could influence gastric eosinophilia and resistance to infection. We found that IL-18(-/-) mice failed to develop protection after oral immunization with H. pylori lysate and cholera toxin adjuvant, indicating an important role of IL-18 in protection. Well-protected C57BL/6 wild-type (WT) mice demonstrated substantial influx of CD4(+) T cells and eosinophilic cells in the gastric mucosa, whereas IL-18(-/-) mice had less gastritis, few CD4(+) T cells, and significantly reduced numbers of eosinophilic cells. T cells in well-protected WT mice produced increased levels of IFN-gamma and IL-18 to recall Ag. By contrast, unprotected IL-18(-/-) mice exhibited significantly reduced gastric IFN-gamma and specific IgG2a Ab levels. Despite differences in gastric eosinophilic cell infiltration, protected WT and unprotected IL-18(-/-) mice had comparable levels of local eotaxin, suggesting that IL-18 influences protection via Th1 development and IFN-gamma production rather than through promoting local production of eotaxin and eosinophilic cell infiltration.  相似文献   

6.
Interleukin (IL) -21 is produced by Natural Killer T (NKT) cells and CD4+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK) cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R) and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT) and IL-21R knock out (KO) mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2) infection model to show that IL-21 – IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i) WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i.) and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21) had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.  相似文献   

7.
The regulatory roles of Th1 and Th2 cells in immune protection against Helicobacter infection are not clearly understood. In this study, we report that a primary H. pylori infection can be established in the absence of IL-12 or IFN-gamma. However, IFN-gamma, but not IL-12, was involved in the development of gastritis because IFN-gamma(-/-) (GKO) mice exhibited significantly less inflammation as compared with IL-12(-/-) or wild-type (WT) mice. Both IL-12(-/-) and GKO mice failed to develop protection following oral immunization with H. pylori lysate and cholera toxin adjuvant. By contrast, Th2-deficient, IL-4(-/-), and WT mice were equally well protected. Mucosal immunization in the presence of coadministered rIL-12 in WT mice increased Ag-specific IFN-gamma-producing T cells by 5-fold and gave an additional 4-fold reduction in colonizing bacteria, confirming a key role of Th1 cells in protection. Importantly, only protected IL-4(-/-) and WT mice demonstrated substantial influx of CD4(+) T cells in the gastric mucosa. The extent of inflammation in challenged IL-12(-/-) and GKO mice was much reduced compared with that in WT mice, indicating that IFN-gamma/Th1 cells also play a major role in postimmunization gastritis. Of note, postimmunization gastritis in IL-4(-/-) mice was significantly milder than WT mice, despite a similar level of protection, indicating that immune protection is not directly linked to the degree of gastric inflammation. Only protected mice had T cells that produced high levels of IFN-gamma to recall Ag, whereas both protected and unprotected mice produced high levels of IL-13. We conclude that IL-12 and Th1 responses are crucial for H. pylori-specific protective immunity.  相似文献   

8.
The role of IL-6 in Th2 cell differentiation and response development after the injection of eggs from Schistosoma mansoni was investigated using wild-type (WT) and IL-6-/- mice. IL-6 was induced in the lymph nodes (LN) of WT mice within 24 h of egg injection, and IL-4 production by WT LN cells and CD4 T cells isolated 24 h after egg injection and stimulated in vitro was observed. In the absence of IL-6, this early production of IL-4 by LN cells and purified CD4 T cells was not abolished; although the level of IL-4 produced by IL-6-/- LN cells was similar to WT, IL-4 production by purified IL-6-/- CD4 T cells was reduced compared with WT. Despite the difference in CD4 T cell production of IL-4, the development of egg-specific Th2 cells 7 days after egg injection was not affected by the absence of IL-6. Nevertheless, Ab production was impaired and the in vitro proliferative response of whole LN cell populations, CD4 and CD8 T cells, and B cells from IL-6-/- mice was poor compared with WT. The proliferative defect in the IL-6-/- cells correlated with decreased IL-2R expression, and addition of exogenous IL-6 enhanced IL-2R expression as well as proliferation of LN cells from IL-6-/- mice. These studies demonstrate that Th2 differentiation and response development in vivo is not dependent on IL-6, but that Th-dependent and independent B cell responses are. Our results also emphasize the importance of IL-6 for lymphoproliferation, possibly through induction of IL-2R expression.  相似文献   

9.
CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.  相似文献   

10.
A CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the TNF family. To illustrate the potential role of CD30L in CD4(+) Th1 cell responses, we investigated the fate of Ag-specific CD4(+) T cells in CD30L-deficient (CD30L(-/-)) mice after Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. The number of bacteria was significantly higher in organs of CD30L(-/-) mice than in wild-type (WT) mice 4 wk postinfection. The numbers of purified protein derivative- or Ag85B-specific-IFN-gamma-producing-CD4(+) T cells in spleen, lung, or peritoneal exudate cells were significantly fewer in CD30L(-/-) mice than in WT mice. During the infection, CD30L was expressed mainly by CD44(+)CD3(+)CD4(+) T cells but not by CD3(+)CD8(+) T cells, B cells, dendritic cells, or macrophages. Costimulation with agonistic anti-CD30 mAb or coculturing with CD30L-transfected P815 cells restored IFN-gamma production by CD4(+) T cells from BCG-infected CD30L(-/-) mice. Coculturing with CD30L(+/+)CD4(+) T cells from BCG-infected WT mice also restored the number of IFN-gamma(+)CD30L(-/-)CD4(+) T cells. When transferred into the CD30L(+/+) mice, Ag-specific donor CD30L(-/-) CD4(+) T cells capable of producing IFN-gamma were restored to the compared level seen in CD30L(+/+) CD4(+) T cells on day 10 after BCG infection. When naive CD30L(+/+) T cells were transferred into CD30L(-/-) mice, IFN-gamma-producing-CD4(+) Th1 cells of donor origin were normally generated following BCG infection, and IFN-gamma-producing-CD30L(-/-)CD4(+) Th1 cells of host origin were partly restored. These results suggest that CD30L/CD30 signaling executed by CD30(+) T-CD30L(+) T cell interaction partly play a critical role in augmentation of Th1 response capable of producing IFN-gamma against BCG infection.  相似文献   

11.
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.  相似文献   

12.
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.  相似文献   

13.
IL-10-producing B cells, also known as regulatory B cells (Bregs), play a key role in controlling autoimmunity. In this study, we report that chimeric mice specifically lacking IL-10-producing B cells (IL-10(-/-)B cell) developed an exacerbated arthritis compared with chimeric wild-type (WT) B cell mice. A significant decrease in the absolute numbers of Foxp3 regulatory T cells (Tregs), in their expression level of Foxp3, and a marked increase in inflammatory Th1 and Th17 cells were detected in IL-10(-/-) B cell mice compared with WT B cell mice. Reconstitution of arthritic B cell deficient (μMT) mice with different B cell subsets revealed that the ability to modulate Treg frequencies in vivo is exclusively restricted to transitional 2 marginal zone precursor Bregs. Moreover, transfer of WT transitional 2 marginal zone precursor Bregs to arthritic IL-10(-/-) mice increased Foxp3(+) Tregs and reduced Th1 and Th17 cell frequencies to levels measured in arthritic WT mice and inhibited inflammation. In vitro, IL-10(+/+) B cells established longer contact times with arthritogenic CD4(+)CD25(-) T cells compared with IL-10(-/-) B cells in response to Ag stimulation, and using the same culture conditions, we observed upregulation of Foxp3 on CD4(+) T cells. Thus, IL-10-producing B cells restrain inflammation by promoting differentiation of immunoregulatory over proinflammatory T cells.  相似文献   

14.
15.
16.
Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.  相似文献   

17.
Cytotoxic T cells (CTL) play a critical role in the clearance of respiratory viral infections, but they also contribute to disease manifestations. In this study, we infected mice with a genetically modified pneumonia virus of mice (PVM) that allowed visualization of virus-specific CTL and infected cells in situ. The first virus-specific T cells entered the lung via blood vessels in the scattered foci of PVM-infected cells, which densely clustered around the bronchi at day 7 after infection. At this time, overall pulmonary virus load was maximal, but the mice showed no overt signs of disease. On days 8 to 9, T cells gained access to the infected bronchial epithelium and to the lung interstitium, which was associated with a reduction in the number of virus-infected cells within the initial clusters but could not prevent further virus spread throughout the lung tissue. Interestingly, recruitment of virus-specific CTL throughout the parenchyma was still ongoing on day 10, when the virus infection was already largely controlled. This also represented the peak of clinical disease. Thus, disease was associated with an exuberant T cell infiltration late in the course of the infection, which may be required to completely eliminate virus at residual foci of infection. PVM-induced immunopathology may thus result from the need to generate widespread T cell infiltrates to complete the elimination of virus-infected cells in a large organ like the lung. This experimental model provides the first insights into the spatiotemporal evolution of pulmonary antiviral T cell immunity in vivo.  相似文献   

18.
Infection of mice with pneumonia virus of mice (PVM) is used as a natural host experimental model for studying the pathogenesis of infection with the closely related human respiratory syncytial virus. We analyzed the contribution of T cells to virus control and pathology after PVM infection. Control of a sublethal infection with PVM strain 15 in C57BL/6 mice was accompanied by a 100-fold increase in pulmonary cytotoxic T lymphocytes, 20% of which were specific for PVM. T-cell-deficient mice failed to eliminate PVM and became virus carriers in the absence of the clinical or histopathological signs of pneumonia that occurred after infection of control mice. Mice with limited T-cell numbers did not achieve virus control without weight loss, indicating that T-cell-mediated virus control was closely linked to immunopathology. Both CD4 and CD8 T cells independently contributed to virus elimination and disease. Virus control and disease were similar in the absence of perforin, gamma interferon, or tumor necrosis factor alpha. Interestingly, disease and mortality after lethal high-dose PVM infection were independent of T cells. These data illustrate a key role for T cells in control of PVM infection and demonstrate that both T-cell-dependent and -independent pathways contribute to disease in a viral dose-dependent fashion.  相似文献   

19.
20.
Th2 cells induce asthma through the secretion of cytokines. Two such cytokines, IL-4 and IL-13, are critical mediators of many features of this disease. They both share a common receptor subunit, IL-4Rα, and signal through the STAT6 pathway. STAT6(-/-) mice have impaired Th2 differentiation and reduced airway response to allergen. Transferred Th2 cells were not able to elicit eosinophilia in response to OVA in STAT6(-/-) mice. To clarify the role of STAT6 in allergic airway inflammation, we generated mouse bone marrow (BM) chimeras. We observed little to no eosinophilia in OVA-treated STAT6(-/-) mice even when STAT6(+/+) BM or Th2 cells were provided. However, when Th2 cells were transferred to STAT6×Rag2(-/-) mice, we observed an eosinophilic response to OVA. Nevertheless, the expression of STAT6 on either BM-derived cells or lung resident cells enhanced the severity of OVA-induced eosinophilia. Moreover, when both the BM donor and recipient lacked lymphocytes, transferred Th2 cells were sufficient to induce the level of eosinophilia comparable with that of wild-type (WT) mice. The expression of STAT6 in BM-derived cells was more critical for the enhanced eosinophilic response. Furthermore, we found a significantly higher number of CD4(+)CD25(+)Foxp3(+) T cells (regulatory T cells [Tregs]) in PBS- and OVA-treated STAT6(-/-) mouse lungs compared with that in WT animals suggesting that STAT6 limits both naturally occurring and Ag-induced Tregs. Tregs obtained from either WT or STAT6(-/-) mice were equally efficient in suppressing CD4(+) T cell proliferation in vitro. Taken together, our studies demonstrate multiple STAT6-dependent and -independent features of allergic inflammation, which may impact treatments targeting STAT6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号