首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human pancreatic ribonuclease, the homolog of bovine pancreatic ribonuclease, has a significant therapeutic potential. Its study has been hindered by the difficulty of obtaining the enzyme in a pure and homogeneous form, either from human source or using heterologous expression. Engineering of different variants of human pancreatic ribonuclease has allowed us to study and overcome some problems encountered during its heterologous production in an Escherichia coli system and its purification from inclusion bodies. The 5'-end region of the mRNA that encodes the enzyme is critical for obtaining high expression levels. The results also suggest the importance of the proline 50 residue in the recovery yields of human pancreatic ribonuclease. All the variants produced are pure and homogeneous. Their homogeneity has been demonstrated by cation-exchange and reversed-phase chromatography and by mass spectrometry analysis. Moreover, enhancement of human pancreatic ribonuclease thermal stability is observed when residues R4, K6, Q9, D16, and S17 are changed to the corresponding residues of bovine seminal ribonuclease.  相似文献   

2.
Kim HY  Zhang Y  Lee BC  Kim JR  Gladyshev VN 《Proteins》2009,74(4):1008-1017
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.  相似文献   

3.
Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme·substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans.  相似文献   

4.
The capsular polysaccharide of Escherichia coli K1 is a linear polymer of N-acetylneuraminic acid in alpha-2,8 linkage. Certain substrains of E. coli K1 (designated OAc+) modify the polysaccharide by O-acetylation of the sialic acids. We demonstrate here an acetyl-coenzyme A: polysialosyl O-acetyltransferase activity that is found only in E. coli K1 OAc+ substrains. When form variation between the O-acetyl-positive and -negative states occurred in strain D698:K1, the fluctuations were accompanied by appropriate changes in the expression of enzyme activity. Thus, expression of this enzyme can account for the OAc+ phenotype and for the form variation between OAc+ and OAc-. The enzyme was solubilized in nonionic detergent and freed of endogenous acceptor activity by DEAE-cellulose chromatography, and its general properties were determined. Analysis of the reaction product showed a highly preferential acetylation reaction that was confined to polysialosyl units of greater than 14 residues. Acetyl groups were shown to be transferred to both the 7- and the 9-positions of the sialic acid residues. The partially purified enzyme was stable even after prolonged incubation at 57 degrees C. In contrast, any further purification resulted in loss of activity, even at 4 degrees C. Treatment of the stable enzyme with a polysialic acid-specific endoneuraminidase caused a similar loss of enzyme stability. This effect of the endoneuraminidase could be protected against by the addition of exogenous polysialic acid. This indicates that the partially purified enzyme contains traces of endogenous polysialic acid substrate that are required for the stability of the enzyme. Finally, the enzyme can O-acetylate the polysialic acid chains on the eucaryotic protein neural cell adhesion molecule, suggesting that enzymatic recognition of the substrate requires only the polysialic acid sequence.  相似文献   

5.
Escherichia coli adenylate kinase (AKe) as well as the enzyme from yeast and mitochondria differs from the muscle cytosolic variant (AK1) by an insertion of 25 amino acid residues that are missing in AK1. The extra sequence, highly homologous in "large" size variants, is situated between residues 133 and 157 in AKe. Removal of 25 codons in the corresponding adk gene resulted in expression of a modified form of adenylate kinase (delta 133-157 AKe) which still conserved 7% of the maximal activity of the wild-type protein. The apparent Km for nucleotide substrates was increased by a factor of 4.6 (ADP), 23 (ATP) or 43 (AMP) in delta 133-157 AKe when compared with the wild-type enzyme. The secondary structure of delta 133-157 AKe, as well as its thermal stability were very similar to the parent protein. However, the deleted protein was much more sensitive than the wild-type enzyme to inactivation by trypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of trypsin digested delta 133-157 AKe revealed accumulation of several well defined fragments which were not observed in the case of wild-type enzyme. We conclude that the additional sequence, although necessary for expression of full activity in AKe, is not critical for catalysis. It is perhaps responsible for interaction of enzyme with other cellular components although a different mechanism of water shielding for large and small size variants of AK can be also envisaged.  相似文献   

6.
The waaJ gene encodes an alpha-1,2-glucosyltransferase involved in the synthesis of the outer core region of the lipopolysaccha-ride of some Escherichia coli and Salmonella isolates. WaaJ belongs to glycosyltransferase CAZy family 8, characterized by the GT-A fold, a DXD motif, and by retention of configuration at the anomeric carbon of the donor sugar. Detailed kinetic and structural information for bacterial family 8 glycosyltransferases has resulted from studies of Neisseria meningitidis LgtC. As many as 28 amino acids could be deleted from the C terminus of LgtC without affecting its in vitro catalytic behavior. This C-terminal domain has a high ratio of positively charged and hydrophobic residues, a feature conserved in WaaJ and some other family 8 representatives. Unexpectedly, deletion of as few as five residues from the C terminus of WaaJ resulted in substantially reduced in vivo activity. With deletions of 15 residues or less, activity was only detected when levels of expression were elevated. No in vivo activity was detected after the removal of 20 amino acids, regardless of expression levels. Longer deletions (20 residues and greater) compromised the ability of WaaJ to associate with the membrane. However, the reduced in vivo activity in enzymes lacking 5-12 C-terminal residues also reflected a dramatic drop in catalytic activity in vitro (a 294-fold decrease in the apparent kcat/Km,LPS). Deletions removing 20 or more residues resulted in a protein showing no detectable in vitro activity. Therefore, the C-terminal domain of WaaJ plays a critical role in enzyme function.  相似文献   

7.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

8.
甲基对硫磷水解酶参与催化相关结构的研究   总被引:1,自引:0,他引:1  
甲基对硫磷水解酶(MPH)是一种新的有机磷水解酶。将完整的甲基对硫磷水解酶基因(mpd)构建入pUC19载体,使得mpd基因以自身的启动子在Escherichia coli DH5α中表达并得到了纯化。金属螯合实验发现MPH的活性不受金属螯合剂1, 10菲NFDA1啉的影响;但用电感耦合等离子发射光谱测定其金属含量显示MPH是金属酶,1mol酶中结合了2mol的Zn2+。为确定参与MPH催化活性的必需氨基酸,用化学修饰剂碳化二亚胺、二乙基焦磷酸酯、磷酸吡哆醛和丁二酮处理MPH,然后检测其残余酶活力,结果表明天冬氨酸、谷氨酸、赖氨酸和精氨酸残基与酶的催化活性无关;而二乙基焦磷酸酯对组氨酸侧链的化学修饰引起酶活性的大幅度的下降,其对酶活性的抑制率达到9.6h-1,说明组氨酸是酶活力所必需的基团。这些结果为进一步研究酶的结构及对酶进行分子改造提供了必要的基础数据。  相似文献   

9.
A cDNA for rat liver beta-glucuronidase was isolated, its sequence determined and its expression after transfection into COS cells studied. The deduced amino acid sequence of the rat liver clone showed 77% homology with that from the cDNA for human placental beta-glucuronidase and 47% homology with that deduced from the cDNA for Escherichia coli beta-glucuronidase. Several differences were found between the cDNA from rat liver and that previously reported from rat preputial gland. Only one change leads to an amino acid difference in the mature enzyme. A chimeric clone was constructed by using a fragment encoding the first 18 amino acid residues of the signal sequence from the human placental cDNA clone and a fragment from the rat clone encoding four amino acid residues of the signal sequence, all 626 amino acid residues of the mature rat enzyme, and all of the 3' untranslated region. After transfection into COS cells the chimeric clone expressed beta-glucuronidase activity that was specifically immunoprecipitated by antibody to rat beta-glucuronidase. The Mr value of 76,000 of the expressed gene product was characteristic of the glycosylated rat enzyme. It was proteolytically processed in COS cells to Mr 75,000 6 h after metabolic labelling. At least 50% of the expressed enzyme was secreted at 60 h post-transfection, but the secreted enzyme did not undergo proteolytic processing. These results provide evidence that the partial cDNA isolated from a rat liver library contains the complete coding sequence for the mature rat liver enzyme and that the chimeric signal sequence allows normal biosynthesis and processing of the transfected rat liver enzyme in COS cells.  相似文献   

10.
M E Fling  J Kopf  C A Richards 《Gene》1988,63(2):165-174
The nucleotide sequence of a DNA fragment that contained the Saccharomyces cerevisiae gene DFR coding for dihydrofolate reductase (DHFR) was determined. The DHFR was encoded by a 633-bp open reading frame, which specified an Mr24264 protein. The polypeptide was significantly related to the DHFRs of chicken liver and Escherichia coli. The yeast enzyme shared 60 amino acid (aa) residues with the avian enzyme and 51 aa residues with the bacterial enzyme. DHFR was overproduced about 40-fold in S. cerevisiae when the cloned gene was present in the vector YEp24. As isolated from the Saccharomyces library, the DFR gene was not expressed in E. coli. When the gene was present on a 1.8-kb BamHI-SalI fragment subcloned into the E. coli vector, pUC18, weak expression in E. coli was observed.  相似文献   

11.
Abstract Escherichia coli LE392 (pAL28) was previously isolated as a positive clone harboring the alginate lyase gene ( aly ) from an alginate-degrading strain, Pseudomonas sp. OS-ALG-9. The plasmid pAL205, one of the constructs obtained after successive subcloning of pAL28, gave the highest expression of aly in E. coli cells. A 8-fold increase in the alginate lyase (Aly) activity in E. coli JM109 (pAL205) was induced with isopropyl-β-d-thiogalactoside, which was 210 times higher than that in E. coli LE392 (pAL28). The highly significant increase in the expression of the Aly enzyme with pAL205 was investigated through the nucleotide sequence around the 5' region of aly as well as the N -terminal sequence of the purified enzyme. It was found that the Aly expressed in E. coli (pAL205) was a fused protein containing 7 residues from the N -terminus of β-galactosidase α-peptide and the mature protein found in the Pseudomonas sp. except for three residues in the N -terminal.  相似文献   

12.
纳豆激酶是一种纤维蛋白溶解酶 ,有望开发成为新型的溶栓药物 .从中国豆豉中分离的具有较强纤溶活性的枯草杆菌DC 2中提取总DNA ,根据纳豆激酶 (NK)基因序列设计引物 ,用PCR法扩增NK基因 .序列分析表明 ,NK基因成熟肽编码区含有 82 5bp ,编码 2 75个氨基酸残基 ,与文献报道的序列分别有 93 4 %和 94 5 %同源性 .将NK基因插入载体pGEX 4T1构建表达质粒pGEX NK ,转化大肠杆菌JM10 9后 ,经 1mmol LIPTG诱导 4h ,发现大量NK融合蛋白表达 ,并形成包涵体 .SDS PAGE分析表明 ,NK融合蛋白作为包涵体的分子量为 5 3kD .凝胶自动扫描结果显示 ,NK融合蛋白约占菌体可溶性蛋白的 2 6 % .  相似文献   

13.
A recombinant clone, pM52, containing cDNA for maize phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) was isolated from a maize leaf cDNA library constructed using an expression vector in Escherichia coli. The screening of the clone was conveniently performed through its ability to complement the phenotype (glutamate requirement) of PEPCase-negative mutant of E. coli. The enzyme encoded by this clone was identical with the major PEPCase in maize, a key enzyme in the C4-pathway, as judged from its allosteric properties and immunological reactivity. The cloned cDNA (3093 nucleotides in length) contained an open reading frame of 2805 nucleotides, the 3'-untranslated region of 222 nucleotides and the poly(dA) tract of 64 nucleotides. The deduced amino acid sequence (935 residues) of the enzyme showed higher homology with that of an enterobacterium, E. coli (43%) than that of a cyanobacterium (blue-green alga), Anacystis nidulans (33%).  相似文献   

14.
A gene encoding NADP-dependent Ds-threo-isocitrate dehydrogenase was isolated from Haloferax volcanii genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. Analysis of the nucleotide sequence revealed an open reading frame of 1260 bp encoding a protein of 419 amino acids with 45837 Da molecular mass. This sequence is highly similar to previously sequenced isocitrate dehydrogenases. In the alignment of the amino acid sequences with those from several archaeal and mesophilic NADP-dependent isocitrate dehydrogenases, the residues involved in dinucleotide binding and isocitrate binding are well conserved. We have developed methods for the expression in Escherichia coli and purification of the enzyme from H. volcanii. This expression was carried out in E. coli as inclusion bodies using the cytoplasmic expression vector pET3a. The enzyme was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing EDTA, MgCl(2) and 3 M NaCl. Maximal activity was obtained after several hours incubation at room temperature.  相似文献   

15.
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.  相似文献   

16.
The structural gene for NAD+-dependent 3-hydroxyisobutyrate dehydrogenase (EC 1.1.1.31) from Pseudomonas putida E23 was cloned in Escherichia coli cells to obtain a large amount of the enzyme and its nucleotides were sequenced to study its structural relationship with other proteins. The gene encoded a polypeptide containing 295 amino acid residues and was in a cluster with the gene for methylmalonate semialdehyde dehydrogenase. Transformed E. coli cells overproduced 3-hydroxyisobutyrate dehydrogenase, and the recombinant enzyme was purified to homogeneity with a high yield. Lysine and asparagine residues, which are important in catalysis of the 3-hydroxyacid dehydrogenase family, are conserved in this enzyme.  相似文献   

17.
We found endo-alpha-N-acetylgalactosaminidase in most bifidobacterial strains, which are predominant bacteria in the human colon. This enzyme catalyzes the liberation of galactosyl beta1,3-N-acetyl-D-galactosamine (Galbeta1,3GalNAc) alpha-linked to serine or threonine residues from mucin-type glycoproteins. The gene (engBF) encoding the enzyme has been cloned from Bifidobacterium longum JCM 1217. The protein consisted of 1,966 amino acid residues, and the central domain (590-1381 amino acid residues) exhibited 31-53% identity to hypothetical proteins of several bacteria including Clostridium perfringens and Streptococcus pneumoniae. The recombinant protein expressed in Escherichia coli liberated Galbeta1,3GalNAc disaccharide from Galbeta1,3GalNAcalpha1pNP and asialofetuin, but did not release GalNAc, Galbeta1,3(GlcNAcbeta1,6)GalNAc, GlcNAcbeta1,3GalNAc, and Galbeta1,3GlcNAc from each p-nitrophenyl (pNP) substrate, and also did not release sialo-oligosaccharides from fetuin, indicating its strict substrate specificity for the Core 1-type structure. The stereochemical course of hydrolysis was determined by (1)H NMR and was found to be retention. Site-directed mutagenesis of a total of 22 conserved Asp and Glu residues suggested that Asp-682 and Asp-789 are critical residues for the catalytic activity of the enzyme. The enzyme also exhibited transglycosylation activity toward various mono- and disaccharides and 1-alkanols, demonstrating its potential to synthesize neoglycoconjugates. This is the first report for the isolation of a gene encoding endo-alpha-N-acetylgalactosaminidase from any organisms and for the establishment of a new glycoside hydrolase family (GH family 101).  相似文献   

18.
The gene encoding a novel 5-oxoprolinase without ATP-hydrolyzing activity from Alcaligenes faecalis N-38A was cloned and characterized. The coding region of this gene is 1,299 bp long. The predicted primary protein is composed of 433 amino acid residues, with a 31-amino-acid signal peptide. The mature protein is composed of 402 amino acid residues with a molecular mass of 46,163 Da. The derived amino acid sequence of the enzyme showed no significant sequence similarity to any other proteins reported so far. The 5-oxoprolinase gene was expressed in Escherichia coli by using a regulatory expression system with an isopropyl-beta-D-thiogalactopyranoside-inducible tac promoter, and its expression level was approximately 16 mg per liter. The purified enzyme has the same characteristics as the authentic enzyme, except for the amino terminus, which has three additional amino acids. The enzyme was markedly inhibited by p-chloromercuribenzoic acid, EDTA, o-phenanthroline, HgCl(2), and CuSO(4). The EDTA-inactivated enzyme was completely restored by the addition of Zn(2+) or Co(2+). In addition, the enzyme was found to contain 1 g-atom of zinc per mol of protein. These results suggest that the 5-oxoprolinase produced by A. faecalis N-38A is a zinc metalloenzyme.  相似文献   

19.
We previously described the preparation of highly purified porcine thyroid peroxidase by a procedure that involved initial solubilization of the enzyme with trypsin plus detergent. Recently, the complete amino acid sequence of porcine thyroid peroxidase (TPO) was determined by cDNA cloning, and it became of interest to compare the structure of the purified trypsin-solubilized enzyme with that of the native enzyme. For this purpose we employed antibodies to the purified enzyme and to two synthetic peptides representing defined regions of the protein. We also obtained N-terminal amino acid sequence data on TPO fragments separated by gel electrophoresis. Trypsin cleavage sites in the purified enzyme were observed after arg residues 109 and 561, and also at two undetermined sites close to the putative membrane spanning region at the carboxyl end. Major fragments of approximately 60, 32, and 29 kilodaltons were observed when the purified enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. This observation is explained by assuming that the cleavage site after arg residue 561 occurred within a disulfide loop. The Mr of the trypsin-solubilized enzyme is approximately 88,000 compared to approximately 106,000 for the native enzyme. The difference can be accounted for by the loss of approximately 90 residues from the amino terminus and of at least 80 residues from the carboxyl end. Despite the loss of these fragments totaling approximately 18 kilodaltons and cleavage of the peptide bond after arg residue 561, the purified trypsin-solubilized TPO appears to retain full enzyme activity.  相似文献   

20.
The restriction endonuclease BstVI from Bacillus stearothermophilus V contains three cysteine residues at positions 134, 167 and 180. Titration of Cys residues with DTNB showed that none of them are involved in disulphide bond formation. Cysteine triplets 134 and 167 were modified by recombinant PCR to introduce a serine residue in each case. The mutated genes were cloned into pGEM-T vector and transformed into E. coli JM109. Even though pGEM-T is not designed for expression, the mutant proteins were efficiently expressed in E. coli. The endonuclease carrying the mutation C134S was purified to homogeneity but appeared to be very unstable. In contrast, the C167S mutant enzyme was stable when pure and was studied biochemically. This mutant enzyme was as stable and resistant to protein-denaturing agents as the wild type enzyme. The activity of both enzymes was not affected by preincubations of 2 h at 80 degrees C. A short preincubation at 95 degrees C caused a complete inactivation of the mutant enzyme while the wild type endonuclease retained 30% of its activity. Moreover, the C167S BstVI was more susceptible to be hydrolyzed by proteinase K and trypsine compared to the wild type endonuclease. These results show that the substitution Cys --> Ser at position 167 affects the configuration and thermostability of BstVI restriction endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号