首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A β-anomer preference among galactosides has been attributed to the S-type 14 kDa galactose binding lectin. Here the anomeric preference of this lectin from bovine brain (BBL) is reexamined using inhibition of lectin-mediated haemagglutination, binding of the lectin to dot-blotted glycoproteins and affinity electrophoresis of the lectin through polysaccharide-containing gels. 1.0-methyl α-D-galactoside was 8 times better inhibitor of BBL than the corresponding ß-anomer. The terminal galactose in bovine thyroglobulin (exclusively. α-linked) were also nearly 8 times more inhibitory than those in asialofetuin (exclusively ß-linked). The terminal α-galactose-containing endogenous glycoproteins of bovine brain were nearly 4 times better inhibitors of BBL than laminin. Removal of terminal α-galactose units by α-galactosidase fully abolished the BBL binding of thyroglobulin and endogenous glycoproteins. BBL was also sugar-specifically retarded by polyacrylamide gel containing guar galactommannan which bears only α-linked galactose. Data indicated that α-galactosides were sometimes better than their β-anomers in binding to BBL. The significance of this observation to the physiological role of galactose-binding lectins is discussed.  相似文献   

2.
Aldose-1-epimerase or mutarotase (EC 5.1.3.3) catalyzes interconversion of α/β-anomers of aldoses, such as glucose and galactose, and is distributed in a wide variety of organisms from bacteria to humans. Nevertheless, the physiological role of this enzyme has been elusive in most cases, because the α-form of aldoses in the solid state spontaneously converts to the β-form in an aqueous solution until an equilibrium of α : β=36.5 : 63.5 is reached. A gene named GAL10 encodes this enzyme in yeast. Here, we show that the GAL10 -encoded mutarotase is necessary for utilization of galactose in the milk yeast Kluyveromyces lactis , and that this condition is presumably created by the presence of the β-specific galactose transporter, which excludes the α-anomer from the α/β-mixture in the medium at the cell surface. Thus, we found that a mutarotase-deficient mutant of K. lactis failed to grow on medium, in which galactose was the sole carbon source, but, surprisingly, that the growth failure is suppressed by concomitant expression of the Saccharomyces cerevisiae -derived galactose transporter Gal2p, but not by that of the K. lactis galactose transporter Hgt1p. We also suggest the existence of another mutarotase in K. lactis , whose physiological role remains unknown, however.  相似文献   

3.
Incubation of an enzyme preparation of Rhizobium meliloti with labeled uridine diphosphate glucose led to the formation of radioactive substances soluble in organic solvents. These substances are probably polyprenyl diphosphate saccharides. They behaved like these on treatment with ammonia or with hot phenol and were decomposed by heating for 10 min at pH 2 yielding a mono- and a disaccharide. The monosaccharide was identified as galactose by paper chromatography. The disaccharide gave glucose and galactose by acid hydrolysis. Following reduction with borohydride it yielded glucose and galactitol. After treatment with periodate followed by paper chromatography only galactose was detectable. The disaccharide was hydrolyzed by β- but not by α-glucosidase. Therefore the disaccharide is glucosyl β1-3-galactose.  相似文献   

4.
The protein kinase Snf1/AMPK plays a central role in carbon and energy homeostasis in yeasts and higher eukaryotes. To work out which aspects of the Snf1-controlled regulatory network are conserved in evolution, the Snf1 requirement in galactose metabolism was analyzed in the yeast Kluyveromyces lactis. Whereas galactose induction was only delayed, K. lactis snf1 mutants failed to accumulate the lactose/galactose H+ symporter Lac12p in the plasma membran,e as indicated by Lac12-green fluorescent protein fusions. In contrast to wild-type cells, the fusion protein was mostly intracellular in the mutant. Growth on galactose and galactose uptake could be restored by the KHT3 gene, which encodes a new transporter of the HXT subfamily of major facilitators These findings indicate a new role of Snf1p in regulation of sugar transport in K. lactis.  相似文献   

5.
Newborn screening for galactosemia (galactose-1-phosphate uridyltransferase deficiency), as well as for other defects in galactose metabolism (galactokinase deficiency and uridine diphosphogalactose 4-epimerase deficiency), requires a method of determining both galactose and galactose 1-phosphate in dried blood. We have developed a sequential quantitative method for the microdetermination of galactose and galactose 1-phosphate that can be applied to 3-mm-diameter disks of dried blood and that can be used with a Technion Autoanalyser II equipped with a fluorometer.Galactose is determined by the fluorescence of NADH following treatment with β-galactose dehydrogenase and with the consequent reduction of NAD. The complete system includes alkaline phosphatase for the hydrolysis of galactose 1-phosphate, so that the total amounts of a galactose and galactose 1-phosphate are determined. For the measurement of galactose alone, alkaline phosphate is omitted from the system. The difference in fluorescence between that from the complete system and that from the alkaline phosphatase-omitted system yields the concentration of galactose 1-phosphate.  相似文献   

6.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

7.
The anomers of 1-O-n-octyl-D-glucopyranosides exhibit different crystal packing and thermodynamic properties. Crystallization either from solution or by epitaxy of the α-anomer resembles that of other amphiphiles, such as lysolecithin, and is isostructural to the decyl homologue. The β-anomer crystallizes into a unique form, independent of conditions, with the longest cyrstallographic axis parallel to the best developed crystal face. Both compounds exhibit two phase transitions, one near 70°C, the other above 100°C. The latter corresponds to melting to an isotropic liquid for both forms, but the former is distinctly different for the two anomers. Thus, birefringence is lost only with the β-anomer, while the enthalpy change is two-fold larger for the α-anomer. The crystal packing of the two compounds are thus clearly different.  相似文献   

8.
Several glycoproteins that are present at the nuclear rim and at the nuclear pore complex of tobacco suspension-cultured cells are modified by O-linked oligosaccharides with terminal N-acetylglucosamine (GlcNAc). Here, we report on the purification of several of these glycoproteins, which are referred to as terminal GlcNAc (tGlcNAc) proteins. In vitro galactosylation of the tGlcNAc proteins generated glycoproteins with terminal galactosyl-beta-1, 4-GlcNAc and thus permitted their isolation by Erythrina crystagalli agglutinin affinity chromatography. Peptide sequence information derived from one tGlcNAc protein with an apparent molecular mass of 40 to 43 kD, designated gp40, made it possible to clone its gene. Interestingly, gp40 has 28 to 34% amino acid identity to aldose-1-epimerases from bacteria, and no gene encoding an aldose-1-epimerase has been isolated previously from higher organisms. Polyclonal antibodies were generated against recombinant gp40. Consistent with its purification as a putative nuclear pore complex protein, gp40 was localized to the nuclear rim, as shown by biochemical fractionation and immunofluorescence microscopy.  相似文献   

9.
Despite the genetic interruption of the Leloir pathway both galactosemic patients and galactosemic fibroblasts can convert galactose to CO2 and TCA precipitable products, although at less than the normal rate. These observations stimulated investigations into the identity of the alternative metabolic routes which allows for galactose metabolism in the absence of in vitro galactose-1-P-uridyl transferase. Four lines of galactosemic cells, each without detectable gal-transferase, produced 14CO2 from [1-14C]-galactose (0.094 mumoles in 20 cc of medium) at approximately 39% +/- 16% the rate of transferase positive cells over a 48-hour period. However, galactokinase deficient fibroblasts produced 14CO2 and TCA precipitable products from [1-14C]-galactose or [U-14C]-galactose at only 3% to 9% the rate of normal fibroblasts. Therefore it seems likely that gal-transferase deficient fibroblasts must first synthesize galactose-1-P for further metabolism of galactose.  相似文献   

10.
In Lactococcus lactis subsp. cremoris FD1, galactose and lactose are both transported and phosphorylated by phosphotransferase systems. Lactose 6-phosphate (lactose-6P) is hydrolyzed intracellularly to galactose-6P and glucose. Glucose enters glycolysis as glucose-6P, whereas galactose-6P is metabolized via the tagatose-6P pathway and enters glycolysis at the tagatose diphosphate and fructose diphosphate pool. Galactose would therefore be a gluconeogenic sugar in L. lactis subsp. cremoris FD1, but since fructose 1,6-diphosphatase is not present in this strain, galactose cannot serve as an essential biomass precursor (glucose-6P or fructose-6P) but only as an energy (ATP) source. Analysis of the growth energetics shows that transition from N limitation to limitation by glucose-6P or fructose-6P gives rise to a very high growth-related ATP consumption (152 mmol of ATP per g of biomass) compared with the value in cultures which are not limited by glucose-6P or fructose-6P (15 to 50 mmol of ATP per g of biomass). During lactose metabolism, the galactose flux through the tagatose-6P pathway (r(max) = 1.2 h) is lower than the glucose flux through glycolysis (r(max) = 1.5 h) and intracellular galactose-6P is dephosphorylated; this is followed by expulsion of galactose. Expulsion of a metabolizable sugar has not been reported previously, and the specific rate of galactose expulsion is up to 0.61 g of galactose g of biomass h depending on the lactose flux and the metabolic state of the bacteria. Galactose excreted during batch fermentation on lactose is reabsorbed and metabolized when lactose is depleted from the medium. In vitro incubation of galactose-6P (50 mM) and permeabilized cells (8 g/liter) gives a supernatant containing free galactose (50 mM) but no P(i) (less than 0.5 mM). No organic compound except the liberated galactose is present in sufficient concentration to bind the phosphate. Phosphate is quantitatively recovered in the supernatant as P(i) by hydrolysis with alkaline phosphatase (EC 3.1.3.1), whereas inorganic pyrophosphatase (EC 3.6.1.1) cannot hydrolyze the compound. The results indicate that the unknown phosphate-containing compound might be polyphosphate.  相似文献   

11.
UDP-galactose 4-epimerases from the yeast Kluyvero-myces fragilis and Escherichia coli are both homodimers but the molecular mass of the former (75 kDa/subunit) is nearly double that of the latter (39 kDa/subunit). Protein databank sequence homology revealed the possibility of mutarotase activity in the excess mass of the yeast enzyme. This was confirmed by three independent assay protocols. With the help of specific inhibitors and chemical modification reagents, the catalytic sites of epimerase and mutarotase were shown to be distinct and independent. Partial proteolysis with trypsin in the presence of specific inhibitors, 5'-UMP for epimerase and galactose for mutarotase, protected the respective activities. Similar digestion with double inhibitors cleaved the molecule into two fragments of 45 and 30 kDa. After separation by size-exclusion HPLC, they manifested exclusively epimerase and mutarotase activities, respectively. Epimerases from Kluyveromyces lactis var lactis, Pachysolen tannophilus and Schizosaccharomyces pombi also showed associated mutarotase activity distinct from the constitutively formed mutarotase activity. Thus, the bifunctionality of homodimeric yeast epimerases of 65-75 kDa/subunit appears to be universal. In addition to the inducible bifunctional epimerase/mutarotase, K. fragilis contained a smaller constitutive monomeric mutarotase of approximately 35 kDa.  相似文献   

12.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

13.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

14.
All of the lactic streptococci examined except Streptococcus lactis ML8 fermented galactose to lactate, formate, acetate, and ethanol. The levels of pyruvate-formate lyase and lactate dehydrogenase were elevated and reduced, respectively, in galactose-grown cells compared with glucose- or lactose-grown cells. Reduced intracellular levels of both the lactate dehydrogenase activator (fructose, 1,6-diphosphate) and pyruvate-formate lyase inhibitors (triose phosphates) appeared to be the main factors involved in the diversion of lactate to the other products. S. lactis ML8 produced only lactate from galactose, apparently due to the maintenance of high intracellular levels of fructose 1,6-diphosphate and triose phosphates. The growth rates of all 10 Streptococcus cremoris strains examined decreased markedly with galactose concentrations below about 30 mM. This effect appeared to be correlated with uptake predominantly by the low-affinity galactose phosphotransferase system and initial metabolism via the D-tagatose 6-phosphate pathway. In contrast, with four of the five S. lactis strains examined, galactose uptake and initial metabolism involved more extensive use of the high-affinity galactose permease and Leloir pathway. With these strains the relative flux of galactose through the alternate pathways would depend on the exogenous galactose concentration.  相似文献   

15.
Sharma A  Malakar P 《Bioinformation》2011,5(10):422-429
The Gal1p (Galactokinase) protein is known for regulation of D-galactose metabolism. It catalyzes the formation of galactose -1-phosphate from alpha - D-galactose, which is an important step in galactose catabolism. The knowledge of Gal1p protein structure, its protein interacting partners and enumeration of functional site residues will provide great insight in understanding the functional role of Gal1p. These studies are lacking in case of the Gal11p kinase enzyme. Structure of this enzyme has already been determined in S. cerevisiae, however, no structural information for this protein is available for K. lactis and E. coli. We used the homology modeling based approach to model the structures of Gal1p for K. lactis and E. coli. Furthermore, functional residues were predicted for these Gal1 proteins and the strength of interaction between Gal1p and other Gal proteins was determined by protein-protein interaction studies via patchdock software. The interaction studies revealed that the affinity for Gal1p for other Gal proteins varies in different organisms. Sequence and structural based comparison of Gal1p kinase enzyme showed that the orthologs in K.lactis and S. cervisiae are more similar to each other as compared to the ortholog in E. coli. These studies carried out by us will help in better understanding of the galactose metabolism. Our sequence and structure comparison studies revealed that Human Gal1p shows more homology for Gal1p protein of E. coli. The above studies may be applied to Human Gal1p, where it can help in gaining useful insight into Galactosemia disease.  相似文献   

16.
本实验采用 H~3标记糖饲喂示踪分析法。将苘麻愈伤组织分别用吲哚乙酸和激动素处理,并在培养基中供给 H~3葡萄糖或 H~3半乳糖。——实验表明,激素对细胞壁组成分影响,不仅与激素的种类有关,也与供给的外源单糖有关。而外源单糖(半乳糖、葡萄糖)单独加入或同时加入,使激素对苘麻愈伤组织诱导的影响又有所不同。在吲哚乙酸作用下,促进了 H~3葡萄糖的掺入;而半乳糖的加入又抑制了 H~3葡萄糖掺入到细胞壁各组分。在激动素作用下,促进H~3半乳糖的掺入,而葡萄糖的加入又抑制了 H~3半乳糖掺入到壁的各组分。  相似文献   

17.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

18.
19.
The Fourier transform 13C magnetic resonance spectra of D-fructose 6-phosphate (F6P) and D-fructose 1,6-diphosphate (FDP) were obtained. The signal assignments made on the basis of 13C chemical shifts and 13C-31P spin-spin couplings indicate that the earlier assignments of the C-4 and C-5 resonances of α- and β-fructofuranose in oligosaccharides and D-fructose [Allerhand, A. and Doddrell, D., J. Amer. Chem. Soc., 93, 2777, 2779 (1971)] should be reversed. Integration of signal intensities yields the following equilibrium composition at 35°C: F6P, α-anomer 19±2% and β-anomer 81±2%, FDP, α-anomer 23±4% and β-anomer 77±4%. Less than 1.5% keto or hydrated keto form is present in solutions of either fructose phosphate. The bearing of these findings on the tautomeric specificity of phosphofructokinase is discussed.  相似文献   

20.
Twelve lactose-assimilating strains of the yeast species Kluyveromyces marxianus and its varieties marxianus, lactis and bulgaricus were studied with respect to transport mechanisms for lactose, glucose and galactose, fermentation of these sugars and the occurrence of extracellular lactose hydrolysis. The strains fell into three groups. Group I (two strains): Fermentation of lactose, glucose and galactose, extracellular lactose hydrolysis, apparent facilitated diffusion of glucose and galactose; Group II (two strains): Lactose not fermented, glucose and galactose fermented and transported by an apparent proton symport, extracellular hydrolysis of lactose present (one strain) or questionable; Group III (eight strains): Lactose, glucose and galactose fermented, lactose transported by an apparent proton symport mechanism, extracellular hydrolysis of lactose and transport modes for glucose and galactose variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号